AB 201004-2 appears to reference a specific bill or legislative measure, possibly from a state assembly or legislative body. The "AB" typically stands for "Assembly Bill," while the numbers that follow indicate the bill's unique identifier. However, without additional context regarding the jurisdiction or subject matter, it's difficult to provide further details on its content or implications. For accurate information, you may need to check the official legislative website or documentation associated with the specific bill.
2,2,0,5,1,4,1,3,0,0,1,4,4,0,1,4,3,4,2,1,0
(CD - ab)^2 = (CD - ab)(CD - ab) = c^2 d^2 - 2abcd + a^2b^2 Try it with say a = 4, b = 3, c = 2 & d = 1: Then CD = 2 and ab = 12 so CD - ab = -10 and squared = 100 c^2 = 4 d^2 = 1 so c^2d^2 = 4 x 1 = 4 a^2 = 16 b^2 = 9 so a^2b^2 = 16 x 9 =144 2abcd = 48 giving 4 - 48 + 144 = 100. Shazam!
one quarter 1/4 0 = 0/4 1/2 = 2/4
8
A binary number is a way of representing number such that the place value of each number is 2 times that of the place to its right. A binary number is composed entirely of 0s and 1s. The first ten counting numbers, in binary, are: 1 = 1*1 10 = 1*2 + 0*1 11 = 1*2 + 1 100 = 1*4 + 0*2 + 0*1 101 = 1*4 + 0*2 + 1*1 110 = 1*4 + 1*2 + 0*1 111 = 1*4 + 1*2 + 1*1 1000 = 1*8 + 0*4 + 0*2 + 0*1 1001 = 1*8 + 0*4 + 0*2 + 1*1 1010 = 1*8 + 0*4 + 1*2 + 0*1
(1), (0), (4), (2+3), (1), (0), (1+2), (1) .
we can create a graph with the x-axis representing the horizontal values and the y-axis representing the vertical values. let's determine whether the line segments AB and CD are congruent. The length of line segment AB can be calculated using the distance formula: AB = sqrt((x2 - x1)^2 + (y2 - y1)^2) For AB(0, 1) and CD(4, 1), the length of AB is: AB = sqrt((4 - 0)^2 + (1 - 1)^2) = sqrt(16 + 0) = sqrt(16) = 4 For CD(1, 2) and CD(1, 6), the length of CD is: CD = sqrt((1 - 1)^2 + (6 - 2)^2) = sqrt(0 + 16) = sqrt(16) = 4 Since the length of AB is equal to the length of CD (both are 4 units), we can conclude that line segments AB and CD are congruent.
AB can be found by using the distance formula, which is the square root of (x2-x1)^2 + (y2-y1)^2. In this case, AB= the square root of (-2-(-8))^2 + (-4-(-4))^2 which AB= the square root of 64 + 0 which AB=8.
I was only able to get 13 but I think there can be more, this is what i got: 0+0+4=4 4+0+0=4 0+4+0=4 0+1+3=4 0+3+1=4 0+2+2=4 1+2+1=4 1+1+2=4 1+3+0=4 2+2+0=4 2+0+2=4 3+1+0=4 3+0+1=4
There are ten time differences among Canadian provinces, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 and 4.5 hours. 0 between NB & NS 0 between NB & PE 0 between NS & PE 0 & 0.5 hr. between NB & NL 0 & 0.5 hr. between NS & NL 0 & 0.5 hr. between PE & NL 0 & 1 hr. between BC & AB 0 & 1 hr. between AB & SK 0 & 1 hr. between SK & MB 0 & 1 hr. between MB & ON 0 & 1 hr. between QC & NB 0 & 1 hr. between QC & NS 0 & 1 hr. between QC & PE 0, 0.5, 1 & 1.5 hrs. between QC & NL 0, 1 & 2 hrs. between BC & SK 0, 1 & 2 hrs. between SK & ON 0, 1 & 2 hrs. between ON & QC 1 hr. between AB & MB 1 & 2 hrs. between BC & MB 1 & 2 hrs. between AB & ON 1 & 2 hrs. between MB & QC 1 & 2 hrs. between ON & NB 1 & 2 hrs. between ON & NS 1 & 2 hrs. between ON & PE 1, 1.5, 2 & 2.5 hrs. between ON & NL 1, 2 & 3 hrs. between BC & ON 1, 2 & 3 hrs. between SK & QC 2 hrs. between MB & NB 2 hrs. between MB & NS 2 hrs. between MB & PE 2 & 2.5 hrs. between MB & NL 2 & 3 hrs. between AB & QC 2 & 3 hrs. between SK & NB 2 & 3 hrs. between SK & NS 2 & 3 hrs. between SK & PE 2, 2.5, 3 & 3.5 hrs. between SK & NL 2, 3 & 4 hrs. between BC & QC 3 hrs. between AB & NB 3 hrs. between AB & NS 3 hrs. between AB & PE 3 & 3.5 hrs. between AB & NL 3 & 4 hrs. between BC & NB 3 & 4 hrs. between BC & NS 3 & 4 hrs. between BC & PE 3, 3.5, 4 & 4.5 hrs. between BC & NL AB = Alberta BC = British Columbia MB = Manitoba NB = New Brunswick NL = Newfoundland & Labrador NS = Nova Scotia ON = Ontario PE = Prince Edward Island QC = Quebec SK = Saskatchewan
e---------------4-2-0---------------------4-2-0-------------0-0------------------ B-0---------0----------------------0---0-0-----------4---2-4-------0------------- G---1----1-----------------1--3-----------------------------------------1-------- D------2---------------------------------------------------------------------2--- A-------------------------------------------------------------------------------- E-------------------------------------------------------------------------------- e---------------0--4-2-0---------------------4-2-0-------------0-0--------------- B-0---------0----------------------0---0-0-----------4---2-4-------0------------- G---1----1-----------------1--3-----------------------------------------1-------- D------2---------------------------------------------------------------------2--- A-------------------------------------------------------------------------------- E-------------------------------------------------------------------------------- e-4--4-4-5-7-7--5-4-2-4-5-5---5-4-2-0-----------0-------------------------------- B------------------------------------------------4--2-4------------0------------- G------------------------------------------------------------1--3---------------- D-------------------------------------------------------------------------------- A-------------------------------------------------------------------------------- E-------------------------------------------------------------------------------- e---------0-0--0-----------2--5-4------------------0-2-4-5-7--------------------- B-0--0----------4-2--2-2----------5--5--4--0-0----------------------------------- G-------------------------------------------------------------------------------- D-------------------------------------------------------------------------------- A-------------------------------------------------------------------------------- E-------------------------------------------------------------------------------- e-0--2--4---5---2---0------------------------------------------------------------- B--------------------------------------------------------------------------------- G--------------------------------------------------------------------------------- D--------------------------------------------------------------------------------- A--------------------------------------------------------------------------------- E---------------------------------------------------------------------------------
2,2,0,5,1,4,1,3,0,0,1,4,4,0,1,4,3,4,2,1,0
(CD - ab)^2 = (CD - ab)(CD - ab) = c^2 d^2 - 2abcd + a^2b^2 Try it with say a = 4, b = 3, c = 2 & d = 1: Then CD = 2 and ab = 12 so CD - ab = -10 and squared = 100 c^2 = 4 d^2 = 1 so c^2d^2 = 4 x 1 = 4 a^2 = 16 b^2 = 9 so a^2b^2 = 16 x 9 =144 2abcd = 48 giving 4 - 48 + 144 = 100. Shazam!
+4 +3 +3 -4 -3 -2 0 -1 +3 +1+1 0 +1
Exactly the same. ab+c=c+ab
The domain is {-1, 0, 2, 4}.
2 k^2 - k - 4 = 0 2 (k^2 - (1/2)k - 2) = 0 2 ((k - 1/4)^2 - 1/16 - 2) = 0 2 ((k - 1/4)^2 - 33/16) = 0 2 (k - 1/4 - sqrt(33)/4)(k - 1/4 + sqrt(33)/4) = 0 32 (4k - 1 - sqrt(33))(4k - 1 + sqrt(33)) = 0