AB can be found by using the distance formula, which is the square root of (x2-x1)^2 + (y2-y1)^2. In this case, AB= the square root of (-2-(-8))^2 + (-4-(-4))^2 which AB= the square root of 64 + 0 which AB=8.
8.8 Units
The length of ab can be found by using the Pythagorean theorem. The length of ab is equal to the square root of (0-8)^2 + (0-2)^2 which is equal to the square root of 68. Therefore, the length of ab is equal to 8.24.
Using the distance formula the length of ab is 5 units
12
To find the length of segment AB, we can use the segment addition postulate, which states that the total length of a segment is equal to the sum of the lengths of its parts. Therefore, AB + BC = AC. Given that AC = 78 mm and BC = 29 mm, we can substitute these values into the equation to find AB: AB + 29 = 78. Solving for AB, we get AB = 78 - 29 = 49 mm.
MAX. If you had a series of numbers in the range B1:B84 the following formula would show the largest of them: =MAX(B1:B84).
Length AB is 17 units
8.8 Units
The length of ab can be found by using the Pythagorean theorem. The length of ab is equal to the square root of (0-8)^2 + (0-2)^2 which is equal to the square root of 68. Therefore, the length of ab is equal to 8.24.
12
Using the distance formula the length of ab is 5 units
Using the distance formula the length of ab is 5 units
28 miles taking this route:Take A25 BELFAST, from Castlewellan, to A24 BELFAST.Take A24 to Belfast.
To find the length of segment AB, we can use the segment addition postulate, which states that the total length of a segment is equal to the sum of the lengths of its parts. Therefore, AB + BC = AC. Given that AC = 78 mm and BC = 29 mm, we can substitute these values into the equation to find AB: AB + 29 = 78. Solving for AB, we get AB = 78 - 29 = 49 mm.
12
The length of arc ACB is 57.2.
Endpoints: A (-2, -4) and B (-8, 4) Length of AB: 10 units