answersLogoWhite

0

Well, they stand for nothing. They're just a metaphor.

User Avatar

Wiki User

9y ago

Still curious? Ask our experts.

Chat with our AI personalities

TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga
RossRoss
Every question is just a happy little opportunity.
Chat with Ross
JudyJudy
Simplicity is my specialty.
Chat with Judy

Add your answer:

Earn +20 pts
Q: What does P's and Q's stand for?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What does qs stand for?

quality seconds


Why is the difference between two rational numbers always a rational number?

Suppose x and y are two rational numbers. Therefore x = p/q and y = r/s where p, q, r and s are integers and q and s are not zero.Then x - y = p/q - r/s = ps/qs - qr/qs = (ps - qr)/qsBy the closure of the set of integers under multiplication, ps, qr and qs are all integers,by the closure of the set of integers under subtraction, (ps - qr) is an integer,and by the multiplicative properties of 0, qs is non zero.Therefore (ps - qr)/qs satisfies the requirements of a rational number.


Why is the sum or product of two rational numbers rational?

Suppose p/q and r/s are rational numbers where p, q, r and s are integers and q, s are non-zero.Then p/q + r/s = ps/qs + qr/qs = (ps + qr)/qs.Since p, q, r, s are integers, then ps and qr are integers, and therefore (ps + qr) is an integer.q and s are non-zero integers and so qs is a non-zero integer.Consequently, (ps + qr)/qs is a ratio of two integers in which the denominator is non-zero. That is, the sum is rational.Also p/q * r/s = pr/qs.Since p, q, r, s are integers, then pr and qs are integers.q and s are non-zero integers so qs is a non-zero integer.Consequently, pr/qs is a ratio of two integers in which the denominator is non-zero. That is, the sum is rational.


Why is the multiplication of rational numbers always result in a rational number?

It follows from the closure of integers under addition and multiplication.Any rational number can be expressed as a ratio of two integers, where the second is not zero. So two rational numbers may be expressed as p/q and r/s.A common multiple of their denominators is qs. So the numbers could also have been expressed as ps/qs and qr/qs.Both these have the same denominator so their sum is (ps + qr)/qs.Now, because the set of integers is closed under multiplication, ps, qr and qs are integers and because the set of integers is closed under addition, ps + qr is an integer.Thus the sum has been expressed as a ratio of two integers, ps + qr, and qs and so it is a rational number.


Is the dfference of two positive rational number always positive plz help explain.?

Yes.Suppose a and b are two positive rational numbers. Then a can be expressed in the form p/q where p and q are positive integers, and b can be expressed in the form r/s where r and s are positive integers.Then b - a = r/s - p/q = (qr - ps)/qs.Now, since p, q, r and s are integers, thenby the closure of the set of integers under multiplications, qr, ps and qs are integers;q and s are positive => qs is positive, andby the closure of the set of integers under addition (and subtraction), qr - ps is an integer.That is, b - a = (qr - ps)/qs is a ratio of two integers, where the denominator of the ratio is positive.