answersLogoWhite

0

It has a complete lack of any x-intercepts.

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Math & Arithmetic

If the discriminant is negative the graph of a quadratic function will cross or touch the x-axis time s?

If the discriminant is negative, the equation has no real solution - in the graph, the parabola won't cross the x-axis.


What type of description is true of the discriminant for the graph below?

To accurately describe the discriminant for the graph, one would need to examine the nature of the roots of the quadratic equation represented by the graph. If the graph intersects the x-axis at two distinct points, the discriminant is positive. If it touches the x-axis at one point, the discriminant is zero. If the graph does not intersect the x-axis at all, the discriminant is negative.


Explain how the number of solutions for a quadratic equation relates to the graph of the function?

The number of solutions for a quadratic equation corresponds to the points where the graph of the quadratic function intersects the x-axis. If the graph touches the x-axis at one point, the equation has one solution (a double root). If it intersects at two points, there are two distinct solutions, while if the graph does not touch or cross the x-axis, the equation has no real solutions. This relationship is often analyzed using the discriminant from the quadratic formula: if the discriminant is positive, there are two solutions; if zero, one solution; and if negative, no real solutions.


What happens when there is negative under the square root in a quadratic equation?

When there is a negative number under the square root in a quadratic equation, it indicates that the equation has no real solutions. Instead, it results in complex or imaginary solutions, as the square root of a negative number involves the imaginary unit (i). This situation occurs when the discriminant (the part under the square root in the quadratic formula) is negative. Consequently, the quadratic graph does not intersect the x-axis, indicating no real roots.


What is the graph for quadratic equation?

the graph for a quadratic equation ct5r

Related Questions

If the discriminant is negative the graph of a quadratic function will cross or touch the x-axis time s?

If the discriminant is negative, the equation has no real solution - in the graph, the parabola won't cross the x-axis.


What type of description is true of the discriminant for the graph below?

To accurately describe the discriminant for the graph, one would need to examine the nature of the roots of the quadratic equation represented by the graph. If the graph intersects the x-axis at two distinct points, the discriminant is positive. If it touches the x-axis at one point, the discriminant is zero. If the graph does not intersect the x-axis at all, the discriminant is negative.


How are the discriminant and the graph of a quadratic equation related?

If the discriminant = 0 then the graph touches the x axis at one point If the discriminant > 0 then the graph touches the x axis at two ponits If the discriminant < 0 then the graph does not meet the x axis


Explain how the number of solutions for a quadratic equation relates to the graph of the function?

The number of solutions for a quadratic equation corresponds to the points where the graph of the quadratic function intersects the x-axis. If the graph touches the x-axis at one point, the equation has one solution (a double root). If it intersects at two points, there are two distinct solutions, while if the graph does not touch or cross the x-axis, the equation has no real solutions. This relationship is often analyzed using the discriminant from the quadratic formula: if the discriminant is positive, there are two solutions; if zero, one solution; and if negative, no real solutions.


What happens when there is negative under the square root in a quadratic equation?

When there is a negative number under the square root in a quadratic equation, it indicates that the equation has no real solutions. Instead, it results in complex or imaginary solutions, as the square root of a negative number involves the imaginary unit (i). This situation occurs when the discriminant (the part under the square root in the quadratic formula) is negative. Consequently, the quadratic graph does not intersect the x-axis, indicating no real roots.


The graph of a quadratic equation is called a?

The graph of a quadratic equation is called a parabola.The graph of a quadratic equation is called a parabola.The graph of a quadratic equation is called a parabola.The graph of a quadratic equation is called a parabola.


What is the graph for quadratic equation?

the graph for a quadratic equation ct5r


If the discriminant of an equation is positive is true of the equation?

If the discriminant of a quadratic equation is positive, it indicates that the equation has two distinct real roots. This means that the graph of the equation intersects the x-axis at two points. A positive discriminant also suggests that the solutions are not repeated and that the parabola opens either upward or downward, depending on the leading coefficient.


How many times will The graph of a quadratic function crosses the x-axis twice?

A quadratic function will cross the x-axis twice, once, or zero times. How often, depends on the discriminant. If you write the equation in the form y = ax2 + bx + c, the so-called discriminant is the expression b2 - 4ac (it appears as part of the solution, when you solve the quadratic equation for "x" - the part under the radical sign). If the discriminant is positive, the x-axis is crossed twice; if it is zero, the x-axis is crossed once, and if the discriminant is negative, the x-axis is not crossed at all.


What is a parabola the graph of?

It is the graph of a quadratic equation of the formy = ax^2 + bx + c


How many times will a graph with a negative discriminant touch the y-axis?

A graph of an equation in the form y = ax^2 + bx + c will cross the y-axis once - whatever its discriminant may be.


If the discriminant is negative the graph of the quadratic function will cross or touch the x-axis how many times?

It would not touch or intersect the x-axis at all.