If the discriminant = 0 then the graph touches the x axis at one point
If the discriminant > 0 then the graph touches the x axis at two ponits
If the discriminant < 0 then the graph does not meet the x axis
The graph of a quadratic equation is called a parabola.The graph of a quadratic equation is called a parabola.The graph of a quadratic equation is called a parabola.The graph of a quadratic equation is called a parabola.
The graph of a quadratic equation has the shape of a parabola.
The discriminant is the expression under the square root of the quadratic formula.For a quadratic equation: f(x) = ax2 + bx + c = 0, can be solved by the quadratic formula:x = (-b +- sqrt(b2 - 4ac)) / (2a).So if you graph y = f(x) = ax2 + bx + c, then the values of x that solve [ f(x)=0 ] will yield y = 0. The discriminant (b2 - 4ac) will tell you something about the graph.(b2 - 4ac) > 0 : The square root will be a real number and the root of the equation will be two distinct real numbers, so the graph will cross the x-axis at two different points.(b2 - 4ac) = 0 : The square root will be zero and the roots of the equation will be a real number double root, so the graph will touch the x-axis at only one points.(b2 - 4ac) < 0 : The square root will be imaginary, and the roots of the equation will be two complex numbers, so the graph will not touch the x-axis.So by looking at the graph, you can tell if the discriminant is positive, negative, or zero.
A linear equation has the form of mx + b, while a quadratic equation's form is ax2+bx+c. Also, a linear equation's graph forms a line, while a quadratic equation's graph forms a parabola.
The graph of a quadratic equation is a parabola.
It has a complete lack of any x-intercepts.
The graph of a quadratic equation is called a parabola.The graph of a quadratic equation is called a parabola.The graph of a quadratic equation is called a parabola.The graph of a quadratic equation is called a parabola.
If the discriminant is negative, the equation has no real solution - in the graph, the parabola won't cross the x-axis.
To accurately describe the discriminant for the graph, one would need to examine the nature of the roots of the quadratic equation represented by the graph. If the graph intersects the x-axis at two distinct points, the discriminant is positive. If it touches the x-axis at one point, the discriminant is zero. If the graph does not intersect the x-axis at all, the discriminant is negative.
the graph for a quadratic equation ct5r
The number of solutions for a quadratic equation corresponds to the points where the graph of the quadratic function intersects the x-axis. If the graph touches the x-axis at one point, the equation has one solution (a double root). If it intersects at two points, there are two distinct solutions, while if the graph does not touch or cross the x-axis, the equation has no real solutions. This relationship is often analyzed using the discriminant from the quadratic formula: if the discriminant is positive, there are two solutions; if zero, one solution; and if negative, no real solutions.
If the discriminant of a quadratic equation is positive, it indicates that the equation has two distinct real roots. This means that the graph of the equation intersects the x-axis at two points. A positive discriminant also suggests that the solutions are not repeated and that the parabola opens either upward or downward, depending on the leading coefficient.
It is the graph of a quadratic equation of the formy = ax^2 + bx + c
The graph of a quadratic equation has the shape of a parabola.
The graph of a quadratic equation is a parabola
The graph (on Cartesian coordinates) of a quadratic equation is a parabola.
The real solutions are the points at which the graph of the function crosses the x-axis. If the graph never crosses the x-axis, then the solutions are imaginary.