Standard deviation is the variance from the mean of the data.
Variance is the squared deviation from the mean. (X bar - X data)^2
The mean deviation (also called the mean absolute deviation) is the mean of the absolute deviations of a set of data about the data's mean. The standard deviation sigma of a probability distribution is defined as the square root of the variance sigma^2,
Assuming var is variance, simply square the standard deviation and the result is the variance.
characteristics of mean
Standard deviation is the variance from the mean of the data.
Variance is the squared deviation from the mean. (X bar - X data)^2
Some measures:Range,Interquartile range,Interpercentile ranges,Mean absolute deviation,Variance,Standard deviation.Some measures:Range,Interquartile range,Interpercentile ranges,Mean absolute deviation,Variance,Standard deviation.Some measures:Range,Interquartile range,Interpercentile ranges,Mean absolute deviation,Variance,Standard deviation.Some measures:Range,Interquartile range,Interpercentile ranges,Mean absolute deviation,Variance,Standard deviation.
The mean deviation (also called the mean absolute deviation) is the mean of the absolute deviations of a set of data about the data's mean. The standard deviation sigma of a probability distribution is defined as the square root of the variance sigma^2,
I believe you are interested in calculating the variance from a set of data related to salaries. Variance = square of the standard deviation, where: s= square root[sum (xi- mean)2/(n-1)] where mean of the set is the sum of all data divided by the number in the sample. X of i is a single data point (single salary). If instead of a sample of data, you have the entire population of size N, substitute N for n-1 in the above equation. You may find more information on the interpretation of variance, by searching wikipedia under variance and standard deviation. I note that an advantage of using the standard deviation rather than variance, is because the standard deviation will be in the same units as the mean.
Variance is standard deviation squared. If standard deviation can be zero then the variance can obviously be zero because zero squared is still zero. The standard deviation is equal to the sum of the squares of each data point in your data set minus the mean, all that over n. The idea is that if all of your data points are the same then the mean will be the same as every data point. If the mean is the equal to every data point then the square of each point minus the mean would be zero. All of the squared values added up would still be zero. And zero divided by n is still zero. In this case the standard deviation would be zero. Short story short: if all of the points in a data set are equal than the variance will be zero. Yes the variance can be zero.
Standard deviation is the square root of the variance. Therefore, the standard deviation is the sqrt 36 or 6.
The total deviation formula used to calculate the overall variance in a dataset is the sum of the squared differences between each data point and the mean of the dataset, divided by the total number of data points.
Both variance and standard deviation are measures of dispersion or variability in a set of data. They both measure how far the observations are scattered away from the mean (or average). While computing the variance, you compute the deviation of each observation from the mean, square it and sum all of the squared deviations. This somewhat exaggerates the true picure because the numbers become large when you square them. So, we take the square root of the variance (to compensate for the excess) and this is known as the standard deviation. This is why the standard deviation is more often used than variance but the standard deviation is just the square root of the variance.
Assuming var is variance, simply square the standard deviation and the result is the variance.
To find the standard deviation (Sx) in statistics, you first calculate the mean (average) of your dataset. Then, subtract the mean from each data point to find the deviation of each value, square these deviations, and compute their average (variance). Finally, take the square root of the variance to obtain the standard deviation (Sx). This process quantifies the dispersion or spread of the data points around the mean.
characteristics of mean