If the sides of two shapes have a scale factor of sf:1, then their areas will be in the ratio of sf2: 1.
Perimeter will scale by the same factor. Area of the new figure, however is the original figures area multiplied by the scale factor squared. .
The scale factor between two similar figures is the ratio of their corresponding linear dimensions (lengths). When calculating the area of similar figures, the area ratio is equal to the square of the scale factor, since area is a two-dimensional measurement. Thus, if the scale factor is ( k ), the ratio of the areas is ( k^2 ). This relationship illustrates that while the scale factor pertains to linear dimensions, the area ratio reflects the effect of that scaling in two dimensions.
For areas: Square the Scale Factor.
Yes, the same relationship between the scale factor and area applies to similar triangles. If two triangles are similar, the ratio of their corresponding side lengths (the scale factor) is the same, and the ratio of their areas is the square of the scale factor. For example, if the scale factor is ( k ), then the area ratio will be ( k^2 ). This principle holds true for all similar geometric shapes, including rectangles and triangles.
576
The area scale factor is the square of the side length scale factor.
The areas will be proportional to (scale)2
Perimeter will scale by the same factor. Area of the new figure, however is the original figures area multiplied by the scale factor squared. .
The scale factor between two similar figures is the ratio of their corresponding linear dimensions (lengths). When calculating the area of similar figures, the area ratio is equal to the square of the scale factor, since area is a two-dimensional measurement. Thus, if the scale factor is ( k ), the ratio of the areas is ( k^2 ). This relationship illustrates that while the scale factor pertains to linear dimensions, the area ratio reflects the effect of that scaling in two dimensions.
For areas: Square the Scale Factor.
Yes, the same relationship between the scale factor and area applies to similar triangles. If two triangles are similar, the ratio of their corresponding side lengths (the scale factor) is the same, and the ratio of their areas is the square of the scale factor. For example, if the scale factor is ( k ), then the area ratio will be ( k^2 ). This principle holds true for all similar geometric shapes, including rectangles and triangles.
576
For a, it tells you how many times the side lengths grew or shrunk.For b, it tells you that the perimeter grows or shrinks: scale factor times original perimeter.For c, it tells you that the area grows or shrinks: scale factor squared times the original area.
The area is directly proportional to the square of the scale factor. If the scale factor is 2, the area is 4-fold If the scale factor is 3, the area is 9-fold If the scale factor is 1000, the area is 1,000,000-fold
A dilation with a scale factor of 0.5 reduces the size of the figure to half its original dimensions, resulting in a smaller figure. In contrast, a dilation with a scale factor of 2 enlarges the figure to twice its original dimensions, creating a larger figure. Therefore, the two dilations produce figures that are similar in shape but differ significantly in size, with the scale factor of 2 yielding a figure that is four times the area of the figure dilated by 0.5.
100 is the scale factor
If the scale factor is r, then the new area will be the area of the original multiplied by r^2