The areas will be proportional to (scale)2
For a, it tells you how many times the side lengths grew or shrunk.For b, it tells you that the perimeter grows or shrinks: scale factor times original perimeter.For c, it tells you that the area grows or shrinks: scale factor squared times the original area.
Whatever the ratio of perimeters of the similar figures, the areas will be in the ratios squared. Examples: * if the figures have perimeters in a ratio of 1:2, their areas will have a ratio of 1²:2² = 1:4. * If the figures have perimeters in a ratio of 2:3, their areas will have a ratio of 2²:3² = 4:9.
how to do a scale factor of cylinder is that you find the base and the height and the length of A area hope you like my examples.
The scale factor is 1:100 for the area. The linear scale factor is 1:10.
To find the new area, you have to multiply the original area by the square of the scale change. For example, you have a rectangle with adjacent sides of 3 and 4. Another rectangle has the same dimensions but with triple the scale. The original rectangle's area is 12. Multiply that by 9, which is the square of the new scale, and you get an area of 108. That matches up with the area of the new rectangle, which has adjacent sides of 12 and 9.
The area scale factor is the square of the side length scale factor.
Perimeter will scale by the same factor. Area of the new figure, however is the original figures area multiplied by the scale factor squared. .
The scale factor between two similar figures is the ratio of their corresponding linear dimensions (lengths). When calculating the area of similar figures, the area ratio is equal to the square of the scale factor, since area is a two-dimensional measurement. Thus, if the scale factor is ( k ), the ratio of the areas is ( k^2 ). This relationship illustrates that while the scale factor pertains to linear dimensions, the area ratio reflects the effect of that scaling in two dimensions.
If the sides of two shapes have a scale factor of sf:1, then their areas will be in the ratio of sf2: 1.
For areas: Square the Scale Factor.
Yes, the same relationship between the scale factor and area applies to similar triangles. If two triangles are similar, the ratio of their corresponding side lengths (the scale factor) is the same, and the ratio of their areas is the square of the scale factor. For example, if the scale factor is ( k ), then the area ratio will be ( k^2 ). This principle holds true for all similar geometric shapes, including rectangles and triangles.
576
For a, it tells you how many times the side lengths grew or shrunk.For b, it tells you that the perimeter grows or shrinks: scale factor times original perimeter.For c, it tells you that the area grows or shrinks: scale factor squared times the original area.
The area is directly proportional to the square of the scale factor. If the scale factor is 2, the area is 4-fold If the scale factor is 3, the area is 9-fold If the scale factor is 1000, the area is 1,000,000-fold
100 is the scale factor
If the scale factor is r, then the new area will be the area of the original multiplied by r^2
The areas are related by the square of the scale factor.