The answer depends on what is already known about the two triangles.
"What else" implies there is already something that is congruent. But since you have not bothered to share that crucial bit of information, I cannot provide a more useful answer. no correct
No, something could be similar to something else, but be bigger. To be congruent they need to be the exactly the same.
To show that triangles ABC and DEF are congruent by the AAS (Angle-Angle-Side) theorem, you need to establish that two angles and the non-included side of one triangle are congruent to the corresponding two angles and the non-included side of the other triangle. If you have already shown two angles congruent, you would need to prove that one of the sides opposite one of those angles in triangle ABC is congruent to the corresponding side in triangle DEF. This additional information will complete the criteria for applying the AAS theorem.
The lengths of the sides need not be congruent. For example, consider a square and a rectangle.
__ - __ AC = XZ = is the similar sign
Angle "A" is congruent to Angle "D"
The answer depends on what is already known about the two triangles.
That depends on which sides have not been proven congruent yet.
For a start, you would need to know what efg and jkl are.
"What else" implies there is already something that is congruent. But since you have not bothered to share that crucial bit of information, I cannot provide a more useful answer.
Bc= qr
Su jL
bc yz
"What else" implies there is already something that is congruent. But since you have not bothered to share that crucial bit of information, I cannot provide a more useful answer.
Line segment BC is congruent to Line Segment YZ
We don't know what has already been proven congruent, sowe're in no position to be able to say what elseis required.