When the coordinates of a figure are added, the figure is translated or shifted in the coordinate plane. For example, if you add a constant value to each coordinate of the figure's points, it moves uniformly in the direction of that value. This transformation does not change the shape, size, or orientation of the figure; it simply relocates it to a different position.
To translate a figure in a coordinate plane, you add specific values to the x-coordinates and y-coordinates of each point of the figure. For example, if you want to translate a figure 3 units to the right and 2 units up, you would add 3 to each x-coordinate and 2 to each y-coordinate. The result will be the new coordinates of the translated figure, maintaining its shape and orientation.
reflection
I'm sorry, but I cannot see the figure you are referring to. If you can provide a description of the graph or the coordinates of point A, I would be happy to help you analyze it.
To rotate a point or figure 90 degrees clockwise about the origin, you can use the transformation formula: for a point (x, y), the new coordinates after rotation will be (y, -x). Apply this transformation to each vertex of the figure. After calculating the new coordinates for all points, plot them to visualize the rotated figure.
When you reflect a figure across the x-axis, the x-coordinates of the points remain the same, while the y-coordinates change sign. This means that if a point is at (x, y), its reflection across the x-axis will be at (x, -y).
Translated means "slide." The y coordinates are increased
how does translation a figure vertically affect the coordinates of its vertices
To rotate a figure 180 degrees clockwise about the origin you need to take all of the coordinates of the figure and change the sign of the x-coordinates to the opposite sign(positive to negative or negative to positive). You then do the same with the y-coordinates and plot the resulting coordinates to get your rotated figure.
The y-coordinates.The y-coordinates.The y-coordinates.The y-coordinates.
The original figure is called the pre-image. After the transformation it becomes the image.
It is (-1, 3).
2
reflection
I'm sorry, but I cannot see the figure you are referring to. If you can provide a description of the graph or the coordinates of point A, I would be happy to help you analyze it.
Scale factor
You go to the C room, then figure out the coordinates.
To rotate a point or figure 90 degrees clockwise about the origin, you can use the transformation formula: for a point (x, y), the new coordinates after rotation will be (y, -x). Apply this transformation to each vertex of the figure. After calculating the new coordinates for all points, plot them to visualize the rotated figure.