Assuming that the B term is the linear term, then as B increases, the graph with a positive coefficient for the squared term shifts down and to the left. This means that a graph with no real roots acquires real roots and then the smaller root approaches -B while the larger root approaches 0 so that the distance between the roots also approaches B. The minimum value decreases.
The parabola
The real solutions are the points at which the graph of the function crosses the x-axis. If the graph never crosses the x-axis, then the solutions are imaginary.
No. It can also be a circle, ellipse or hyperbola.
the graph for a quadratic equation ct5r
It is the axis of symmetry.
the graph of a quadratic function is a parabola. hope this helps xP
The zeros of a quadratic function, if they exist, are the values of the variable at which the graph crosses the horizontal axis.
Yes. And the question is ...
The parabola
Some do and some don't. It's possible but not necessary.
The real solutions are the points at which the graph of the function crosses the x-axis. If the graph never crosses the x-axis, then the solutions are imaginary.
Yes.
That the function is a quadratic expression.
A translation.
When the graph of a quadratic crosses the x-axis twice it means that the quadratic has two real roots. If the graph touches the x-axis at one point the quadratic has 1 repeated root. If the graph does not touch nor cross the x-axis, then the quadratic has no real roots, but it does have 2 complex roots.
The graph of a quadratic equation is called a parabola.The graph of a quadratic equation is called a parabola.The graph of a quadratic equation is called a parabola.The graph of a quadratic equation is called a parabola.
No. It can also be a circle, ellipse or hyperbola.