The period increases - by a factor of sqrt(2).
time period of simple pendulum is dirctly proportional to sqare root of length...
ts period will become sqrt(2) times as long.
A longer pendulum has a longer period.
multiply the length of the pendulum by 4, the period doubles. the period is proportional to the square of the pendulum length.
Increase the length of the pendulum
time period of simple pendulum is dirctly proportional to sqare root of length...
The period of a pendulum is given by the formula T = 2π√(L/g), where L is the length of the pendulum and g is the acceleration due to gravity. If the length is doubled, the new period would be T' = 2π√(2L/g), which simplifies to T' = √2 * T. So, doubling the length of the pendulum increases the period by a factor of √2.
When the length of a simple pendulum is doubled, the frequency of the pendulum decreases by a factor of √2. This relationship is described by the formula T = 2π√(L/g), where T is the period of the pendulum, L is the length, and g is the acceleration due to gravity.
If the length of a pendulum is increased, the period of the pendulum also increases. This relationship is described by the equation for the period of a pendulum, which is directly proportional to the square root of the length of the pendulum. This means that as the length increases, the period also increases.
ts period will become sqrt(2) times as long.
The PERIOD of a Simple Pendulum is affected by its LENGTH, and NOT by its Mass or the amplitude of its swing. So, in your case, the Period of the Pendulum's swing would remain UNCHANGED!
When the length of a pendulum is increased, by any amount, its Time Period increases. i.e. it moves more slowly. Conversely, if the length is decreased, by any amount, its Time Period decreases. i.e. it moves faster.
The period of a pendulum is directly proportional to the square root of its length. As the length of a pendulum increases, its period increases. Conversely, if the length of a pendulum decreases, its period decreases.
If you shorten the length of the string of a pendulum, the frequency of the pendulum will increase. This is because the period of a pendulum is directly proportional to the square root of its length, so reducing the length will decrease the period and increase the frequency.
Doubling the mass of a pendulum will not affect the time period of its oscillation. The time period of a pendulum depends on the length of the pendulum and the acceleration due to gravity, but not on the mass of the pendulum bob.
Increasing the mass of a pendulum would not change the period of its oscillation. The period of a pendulum only depends on the length of the pendulum and the acceleration due to gravity, but not the mass of the pendulum bob.
The period of a pendulum is independent of its length. The period is determined by the acceleration due to gravity and the length of the pendulum does not affect this relationship. However, the period of a pendulum may change if the amplitude of the swing is very wide.