ts period will become sqrt(2) times as long.
The period increases - by a factor of sqrt(2).
time period of simple pendulum is dirctly proportional to sqare root of length...
A longer pendulum has a longer period.
multiply the length of the pendulum by 4, the period doubles. the period is proportional to the square of the pendulum length.
Increase the length of the pendulum
The period increases - by a factor of sqrt(2).
time period of simple pendulum is dirctly proportional to sqare root of length...
The period of a pendulum is given by the formula T = 2π√(L/g), where L is the length of the pendulum and g is the acceleration due to gravity. If the length is doubled, the new period would be T' = 2π√(2L/g), which simplifies to T' = √2 * T. So, doubling the length of the pendulum increases the period by a factor of √2.
The period of a pendulum is directly proportional to the square root of its length. As the length of a pendulum increases, its period increases. Conversely, if the length of a pendulum decreases, its period decreases.
When the length of a simple pendulum is doubled, the frequency of the pendulum decreases by a factor of √2. This relationship is described by the formula T = 2π√(L/g), where T is the period of the pendulum, L is the length, and g is the acceleration due to gravity.
The period of a pendulum is independent of its length. The period is determined by the acceleration due to gravity and the length of the pendulum does not affect this relationship. However, the period of a pendulum may change if the amplitude of the swing is very wide.
The PERIOD of a Simple Pendulum is affected by its LENGTH, and NOT by its Mass or the amplitude of its swing. So, in your case, the Period of the Pendulum's swing would remain UNCHANGED!
When the length of a pendulum is increased, by any amount, its Time Period increases. i.e. it moves more slowly. Conversely, if the length is decreased, by any amount, its Time Period decreases. i.e. it moves faster.
Yes, the period of a pendulum is not affected by the weight of the pendulum bob. The period is determined by the length of the pendulum and the acceleration due to gravity. A heavier pendulum bob will swing with the same period as a lighter one of the same length.
To change the time period of a pendulum, you can adjust the length of the pendulum rod. Shortening the rod will decrease the time period, while lengthening it will increase the time period. This is because the time period of a pendulum is directly proportional to the square root of its length.
The time period of a simple pendulum is not affected by the mass of the bob, as long as the amplitude of the swing remains small. So, doubling the mass of the bob will not change the time period of the pendulum.
Increasing the mass of a pendulum would not change the period of its oscillation. The period of a pendulum only depends on the length of the pendulum and the acceleration due to gravity, but not the mass of the pendulum bob.