0.0025
Chat with our AI personalities
10400 / 29000 = 10397 / 29 = 10397 x 1/29 1/29 = 0.0344827586206896551724137931 03448... The sequence of 28 decimal digits repeats endlessly. Which enables us to answer the question. 34482758620689655172413793103448275862068965517241379310344827586206 89655172413793103448275862068965517241379310344827586206896551724137 93103448275862068965517241379310344827586206896551724137931034482758 62068965517241379310344827586206896551724137931034482758620689655172 41379310344827586206896551724137931034482758620689655172413793103448 27586206896551724137931034482758620689655172413793103448.27 and so on. I hope you're happy.
To find the 400th term of the sequence, we first identify the first term ( a_1 = 8 ) and the common difference ( d = 20 - 8 = 12 ). Using the explicit formula ( a_n = a_1 + (n - 1) \cdot d ), we can substitute ( n = 400 ): [ a_{400} = 8 + (400 - 1) \cdot 12 = 8 + 399 \cdot 12 = 8 + 4788 = 4796. ] Thus, the 400th term is 4796.
1 and 1/8 as a decimal is 1.125
It is: 1 and 1/8 = 1.125 as a decimal.
As a decimal 1/9 = 0.'1' recurring '1'