2711 rounded to 2 significant digits is 2700
6.36*10^2
1,000 to 2 s.f., or 1,000 (2 s.f.) or 1,000.
236+710 = 946. Rounded to 2 significant digits, that is 950, rounded to one sd, it is 900.
2 of them are significant.
There are 5 significant digits in number 14500. To count for a given number as to how many significant digits does it have, look for the first zero form left and decimal point. For ex sample 0045 has 2 significant digits 0.0045 has 2 significant digits 0.4500 has 4 significant digits.
009999991 rounded to 2 significant digits is 1.0e7
2.99 rounded to three significant digits is 2.96 2.99 rounded to two significant digits is 3.0
3.2
Solution: Given, number = 0.4559 If a number only has 2 significant digits, the maximum significant digits it can be rounded to is 2 significant digits. The zeros before a non Zero digit are not significant. The since 9>5 it adds 1 to preceding one while rounding off. ⟹0.046. The original number, 0.4559, has 4 significant digits. Rounding this number to 2 significant digits gives us 0.46.
There are three rules that are used when rounding to a desired number of significant digits (figures): 1. All digits that are not zero, are significant 2. In a number that does not have a decimal point, all zeros between two non-zero digits are significant digits 3. In a number that has a decimal point, all zeros after the leftmost non-zero digit are significant Examples: 12345 rounded to 3 significant digits: 12300, or 1.23 x 104 12.345 rounded to 3 significant digits: 12.3, or 1.23 x 101 0.012345 rounded to 3 significant digits: 0.0123, or 1.23 x 10-2 0.012045 rounded to 3 significant digits: 0.0120, or 1.20 x 10-2 In the last example the zero after 2 is significant. That is the reason for keeping it in the result when rewriting it in powers of 10 notation.
6.36*10^2
1,000 to 2 s.f., or 1,000 (2 s.f.) or 1,000.
236+710 = 946. Rounded to 2 significant digits, that is 950, rounded to one sd, it is 900.
At least 1 and at most 7. It could be 3,999,999.9 rounded to 7 significant figures; It could be 3,999,999 rounded to 6 significant figures; It could be 4,000,015 rounded to 5 significant figures; It could be 4,000,429 rounded to 4 significant figures; It could be 3,999,999 rounded to 3 significant figures; It could be 4,049,999 rounded to 2 significant figures; It could be 4,492,467 rounded to 1 significant figure.
When rounding 1286 to 2 significant figures, you must consider the first two non-zero digits from the left. In this case, those digits are 1 and 2. The digit to the right of 2 (8) is greater than 5, so you round up. Therefore, 1286 rounded to 2 significant figures is 1300.
Just one. The trailing zeros are not significant. * * * * * Not true. Integers with trailing 0s are ambiguous. You cannot differentiate between 500o as a number rounded to the nearest thousand (1 significant digit), or the nearest hundred (2 sig digits), or the nearest ten (3 sig digits) or the nearest unit (4 sig digits).
5 significant digits because the 2 zeros are in between other significant digits.