answersLogoWhite

0

2 degrees Celsius is equal to 35.6 degrees Fahrenheit.

User Avatar

Wiki User

15y ago

Still curious? Ask our experts.

Chat with our AI personalities

ReneRene
Change my mind. I dare you.
Chat with Rene
EzraEzra
Faith is not about having all the answers, but learning to ask the right questions.
Chat with Ezra
DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin

Add your answer:

Earn +20 pts
Q: What is 2 C to F?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the difference between Taylor series and Maclaurin series?

A Maclaurin series is centered about zero, while a Taylor series is centered about any point c. M(x) = [f(0)/0!] + [f'(0)/1!]x +[f''(0)/2!](x^2) + [f'''(0)/3!](x^3) + . . . for f(x). T(x) = [f(c)/0!] + [f'(c)/1!](x-c) +[f''(c)/2!]((x-c)^2) + [f'''(c)/3!]((x-c)^3) + . . . for f(x).


What is a critical point?

Critical point (in one variable): A point on the graph y = f(x) at which f is differentiable and f'(x) = 0. The term is also used for the number c such that f'(c) = 0. The corresponding value f(c) is a critical value. A critical point c can be classified depending upon the behavior of fin the neighborhood of c, as one of following:1. a local minimum, if f'(x) > 0 to the left of c and f'(x)< 0 to the right of c.2. a local maximum, if f'(x) < 0 to the left of c and f'(x)> 0 to the right of c.3. neither local maximum nor local minimum:a) if f'(x) has the same sign to the left and to the right of c, in which case c is a horizontal point of inflection.b) if there is an interval at every point of which f'(x) = 0 and c is an endpoint or interior point of this interval.(This is called the first derivative test).The second derivative test (is also a test for maximum and minimum values. It is a consequence of the concavity test):Suppose f is continuous near c.1. If f'(c) = 0 and f''(c) > 0, then f has a local minimum at c.2. If f'(c) = 0 and f''(c) < 0, then f has a local maximum at c.Example: f(x) = x^3 - 12x + 1(a) Find the intervals on which f is increasing or decreasing.(b) Find the local maximum and minimum values of f.(c) Find the intervals of concavity and the inflection points.Solution:(a) f(x) = x^3 - 12x + 1f'(x) = 3x^2 - 12f'(x) = 3(x +2)(x - 2)Interval: x < -2; -2 x < 2; x > 2x + 2: - ; +; +x - 2: - ; - ; +f'(x): + ; - ; +f: increasing on (-&infin;, -2); decreasing on (-2, 2); increasing on (2, &infin;) So f is increasing on (-&infin;, -2) and (2, &infin;) and f is decreasing on (-2, 2).(b) f changes from increasing to decreasing at x = -2 and from decreasing to increasing at x = 2. Thus f(-2) = 17 is a local maximum value and f(2) = -15 is a local minimum value.(c) f''(x) = 6xf''(x) > 0 &harr; x > 0 and f''(x) < 0 &harr; x < 0. Thus f is concave upward on (0, &infin;) and concave downward on (-&infin;, 0). There is an inflection point where the concavity changes, at (0, f(0)) = (0, 1).


Which of his measurements is the most accurately A 213 degrees F B 211.1 degrees F C 212.89 degrees F D 211.8 degrees F?

C C is to 2 decimal places.


What is f(2) if f(x) (x 1)2?

it was C for anyone who comes across this question&hellip;


What is the equivalent to 2 degrees C in F?

35.6