A Maclaurin series is centered about zero, while a Taylor series is centered about any point c.
M(x) = [f(0)/0!] + [f'(0)/1!]x +[f''(0)/2!](x^2) + [f'''(0)/3!](x^3) + . . .
for f(x).
T(x) = [f(c)/0!] + [f'(c)/1!](x-c) +[f''(c)/2!]((x-c)^2) + [f'''(c)/3!]((x-c)^3) + . . .
for f(x).
Chat with our AI personalities
The numerical value of pi is often found using a Taylor or Maclaurin series (Taylor series centered at 0).
Best example is that an "odd" (or "even") function's Maclaurin series only has terms with odd (or even) powers. cos(x) and sin(x) are examples of odd and even functions with easy to calculate Maclaurin series.
There is no simple answer. There are simple formulae for simple sequences such as arithmetic or geometric progressions; there are less simple solutions arising from Taylor or Maclaurin series. But for the majority of sequences there are no solutions.
Yes. If the Maclaurin expansion of a function locally converges to the function, then you know the function is smooth. In addition, if the residual of the Maclaurin expansion converges to 0, the function is analytic.
What is the difference between a single trade discount and trade discount series? In: http://wiki.answers.com/Q/FAQ/2547-72 [Edit categories]