(4t2 - 16)/8 ÷ (t - 2)/6 = [4(t2 - 4)/8] x 6/(t - 2) = (t2 - 22)/2 x 6/(t - 2) = (6/2)[(t + 2)(t - 2)/(t - 2)] = 3(t + 2) = 3t + 6
There are 12 possible outcomes: ....................................................... ............................./---- 1 = H + 1 ..... ............................/.......................... .........................../../--- 2 = H + 2 ..... ........................../../......................... ........................./../../-- 3 = H + 3 ..... .............../-- H _/_/_/......................... ............../.........\..\..\-- 4 = H + 4 ...... ............./...........\..\.......................... ............/.............\..\--- 5 = H + 5 ...... .........../...............\........................... ........../.................\---- 6 = H + 6 ...... ........./............................................. .........\............................................. ..........\................./---- 1 = T + 1 ...... ...........\.............../........................... ............\............./../--- 2 = T + 2 ...... .............\.........../../.......................... ..............\........./../../-- 3 = T + 3 ...... ...............\-- T _/_/_/......................... ........................\..\..\-- 4 = T + 4 ...... .........................\..\.......................... ..........................\..\--- 5 = T + 5 ...... ...........................\........................... ............................\---- 6 = T + 6 ...... .......................................................
36 = 62 = Triangle(8) The triangle number formula: T(n) = (n2+n)/2. Here is T(8) graphically: . 1 = T(1) = 1 .. +2 = T(2) = 3 ... +3 = T(3) = 6 .... +4 = 10 ..... +5 = 15 ...... +6 = 21 ....... +7 = 28 ........ +8 = 36 36 = 62, graphically: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
If you fit the following cubic t(n) = (-n3 + 9n2 - 20n + 18)/3 where n = 1, 2, 3, ... then the next number is t(6) = 1
t(n) = 24/2n, n = 1, 2, 3, ...
(t + 2)/3 + (t - 4)/6 (the common denominator 6) = [(t + 2)(2)]/(3)(2) + (t - 4)/6 = (2t + 4)/6 + (t - 4)/6 = (2t + 4 + t - 4)/6 = 3t/6 = t/2
(4t2 - 16)/8 ÷ (t - 2)/6 = [4(t2 - 4)/8] x 6/(t - 2) = (t2 - 22)/2 x 6/(t - 2) = (6/2)[(t + 2)(t - 2)/(t - 2)] = 3(t + 2) = 3t + 6
There are 12 possible outcomes: ....................................................... ............................./---- 1 = H + 1 ..... ............................/.......................... .........................../../--- 2 = H + 2 ..... ........................../../......................... ........................./../../-- 3 = H + 3 ..... .............../-- H _/_/_/......................... ............../.........\..\..\-- 4 = H + 4 ...... ............./...........\..\.......................... ............/.............\..\--- 5 = H + 5 ...... .........../...............\........................... ........../.................\---- 6 = H + 6 ...... ........./............................................. .........\............................................. ..........\................./---- 1 = T + 1 ...... ...........\.............../........................... ............\............./../--- 2 = T + 2 ...... .............\.........../../.......................... ..............\........./../../-- 3 = T + 3 ...... ...............\-- T _/_/_/......................... ........................\..\..\-- 4 = T + 4 ...... .........................\..\.......................... ..........................\..\--- 5 = T + 5 ...... ...........................\........................... ............................\---- 6 = T + 6 ...... .......................................................
3(t - 2)(t + 1)
t(1) = 3 t(n) = t(n-1) + 2(n-2) for n = 2, 3, 4, ...
12..... h+1, h+2, h+3, h+4, h+5, h+6, t+1, t+2, t+3, t+4, t+5, t+6,
t^4 - 81 = (t^2)^2 - (3^2)^2 = (t^2 - 3^2)(t^2 + 3^2) = (t - 3)(t + 3)(t^2 + 9)
2t-6=3-t 3t-6=3 Add t to both sides 3t=9 Add 6 to both sides t=3 Divide both sides by 3
t(1)= = 9*1 - 3 = 9 - 3 = 6 t(2)= = 9*2 - 3 = 18 - 3 = 15 t(3)= = 9*3 - 3 = 27 - 3 = 24 t(4)= = 9*4 - 3 = 36 - 3 = 33 t(5)= = 9*5 - 3 = 45 - 3 = 42
36 = 62 = Triangle(8) The triangle number formula: T(n) = (n2+n)/2. Here is T(8) graphically: . 1 = T(1) = 1 .. +2 = T(2) = 3 ... +3 = T(3) = 6 .... +4 = 10 ..... +5 = 15 ...... +6 = 21 ....... +7 = 28 ........ +8 = 36 36 = 62, graphically: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
t(n) = (n+1)*(n+2)/2 where n = 1 ,2, 3, ...
t(n) = 3n-1 , where n = 1, 2, 3, ... t(5) = 81 t(6) = 243