To simplify the expression (2q + 10 + 7q), combine the like terms. The terms involving (q) are (2q) and (7q), which add up to (9q). Therefore, the simplified expression is (9q + 10).
4p+7q
simply add the like terms: 4p -3p +2q -2q = p
The cube of the binomial ( (4k - 7q) ) can be calculated using the formula for the cube of a binomial, which is ( (a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 ). Here, ( a = 4k ) and ( b = 7q ). Applying the formula, we get: [ (4k - 7q)^3 = (4k)^3 - 3(4k)^2(7q) + 3(4k)(7q)^2 - (7q)^3. ] This simplifies to: [ 64k^3 - 84k^2q + 147kq^2 - 343q^3. ]
3
17p+17q+p-7q-6p = 12p+17q
4p+7q
8 + 5p + 7q + 9 + 3p Reordering: 8 + 9 + 5p + 3p + 7q Combine like terms: 17 + 8p + 7q
14p + 14q + p - 7q - 6p = 9p + 7q
simply add the like terms: 4p -3p +2q -2q = p
3
17p+17q+p-7q-6p = 12p+17q
Let f(X)=2X2+6X+3 So f(-p)=f(2q) or 2p2-6p+3=8q2+12q+3 or p2-3p=4q2+6q or p2-4q2=3p+6q or (p+2q)(p-2q)=3(p+2q) so p-2q=3
7q+13 = 52 7q = 52-13 7q = 39 q = 39/7
-(b + c - p - 2q)(b + c + p + 2q)
3q + 5 + 2q + 5 = 65 5q + 10 = 65 5q = 55 q = 11 Check it. 33 + 5 + 22 + 5 = 65 It checks.
5p-7q
Q=2