To solve the expression (5 - 2(8 \times 4)), first calculate the multiplication inside the parentheses: (8 \times 4 = 32). Then, multiply that result by -2: (-2 \times 32 = -64). Finally, add 5 to -64: (5 - 64 = -59). Therefore, the answer is (-59).
11 = (42 - 4) - (4 / 4) 12 = (4 + 4) + (√4 + √4) 13 = (42 - 4) + (4 / 4) 14 = (4 + 4 + 4 + √4) 15 = (4 * 4) - (4 / 4) 16 = (4 + 4 + 4 + 4) 17 = (42 + √4) - (4 / 4) 18 = (42 + 4) - (4 - √4) 19 = (42 + 4) - (4 / 4) 20 = (4 * 4) + (√4 + √4)
Here is one set of solutions. The answers here are not unique. 1 = (4*4)/(4*4) 2 = 4/4 + 4/4 3 = (4+4+4)/4 4 = (4-4)*4 + 4 5 = (4*4 + 4) / 4 6 = 4 + (4+4)/4 7 = 4 + 4 - 4/4 8 = 4 + 4 + 4 - 4 9 = 4 + 4 + 4/4 10 = (44 - 4)/4
3 simple solutions (there are more): (4-4)/4 + 4 = 4 4*(4-4)+ 4 = 4 4-((4-4)/4)) = 4
I'll start it, but I'm not going to finish it! 4 X 4 / 4 - 4 = 0 44 / 44 = 1 4 / 4 + 4 / 4 = 2 (4 + 4 + 4) / 4 = 3 (4 / 4)4 X 4 = 4 (4 / 4)4 + 4 = 5 (4 + 4) / 4 + 4 = 6 44 / 4 - 4 = 7 4 + 4 + 4 - 4 = 8 4 / 4 + 4 + 4 = 9 (44 - 4) / 4 = 10 (44 + 4) / 4 = 12 4! - 44 / 4 = 13 4! / 4 + 4 + 4 = 14 44 / 4 + 4 = 15 4 + 4 + 4 + 4 = 16 4 X 4 + 4 / 4 = 17 4 / √4 + 4 * 4 = 18 4! - 4 + 4 - 4 = 20 4! / 4 + 4 X 4 = 22 4 X 4 + 4 + 4 = 24 44 - 4 * 4 = 28 (4 + 4 / 4)! / 4 = 30 44 / (4 + 4) = 32 4! + 44 / 4 = 35 4! X 4! / 4 / 4 = 36 44 - 4 / √4 = 42 44 - 4 / 4 = 43 44(4/4) = 44 4 / 4 + 44 = 45 44 + 4 / √4 = 46 (4 + 4 + 4) X 4 = 48 √4 * 4 + 44 = 52 4 X 4 X 4 - 4 = 60 44 / 4 - √4 = 62 4(4 - 4/4) = 64 44 / 4 + √4 = 66 4 X 4 X 4 + 4 = 68 4! X 4! / (4 + 4) = 72 (4 X 4 + 4) X 4 = 80 (4 - 4 / 4)4 = 81 √4 * 44 - 4 = 84 √4 * 44 - √4 = 86 44 + 44 = 88 √4 * 44 + √4 = 90 √4 * 44 + 4 = 92 4! X 4 / 4 X 4 = 96
4/4 + 4/4 = 2 (one) 4 - (4+4)/4 = 2 (two) (4*4)/(4+4) = 2 (three) 4*(4/(4+4)) = 2 (four) ((4+4)/4) mod 4 = 2 (five) 4 + √4 - √4 - √4 = 2 (six) ((√4)/(√4)) + ((√4)/(√4)) = 2 (seven) 4 + 4 - 4 - √4 = 2 (eight) (√4)^4 / (4+4) = 2 (nine) (√(4*4)) / (4+4) = 2 (ten)
To calculate the total magnification of a compound light microscope, you multiply the magnification of the ocular lens by the magnification of the objective lens. In this case, 12x (ocular lens) multiplied by 44x (objective lens) equals a total magnification of 528x. Therefore, objects viewed through this microscope will appear 528 times larger than their actual size.
5/6 x - 3/8 x = 2220/24 x - 9/24 x = 2211/24 x = 2211 x = (24) (22) = 528x = 528/11x = 48
1 2 3 4 4+1 4+2 4+3 4+4 4+4+1 4+4+2 4+4+3 4+4+4 4+4+4+1 4+4+4+2 4+4+4+3 4+4+4+4 4+4+4+4+1 4+4+4+4+2 4+4+4+4+3 4+4+4+4+4 4+4+4+4+4+1 4+4+4+4+4+2 4+4+4+4+4+3 4+4+4+4+4+4 4+4+4+4+4+4+1 4+4+4+4+4+4+2 4+4+4+4+4+4+3 4+4+4+4+4+4+4 4+4+4+4+4+4+4+1 4+4+4+4+4+4+4+2 4+4+4+4+4+4+4+3 4+4+4+4+4+4+4+4 4+4+4+4+4+4+4+4+1 4+4+4+4+4+4+4+4+2 4+4+4+4+4+4+4+4+3 4+4+4+4+4+4+4+4+4 4+4+4+4+4+4+4+4+4+1 4+4+4+4+4+4+4+4+4+2 4+4+4+4+4+4+4+4+4+3 4+4+4+4+4+4+4+4+4+4 4+4+4+4+4+4+4+4+4+4+1 4+4+4+4+4+4+4+4+4+4+2 4+4+4+4+4+4+4+4+4+4+3 4+4+4+4+4+4+4+4+4+4+4 4+4+4+4+4+4+4+4+4+4+4+1 4+4+4+4+4+4+4+4+4+4+4+2 4+4+4+4+4+4+4+4+4+4+4+3 4+4+4+4+4+4+4+4+4+4+4+4 4+4+4+4+4+4+4+4+4+4+4+4+1 4+4+4+4+4+4+4+4+4+4+4+4+2 I hope this is the answer you search for! (because it took some time!)
26
1 = 4*4/(4*4) 2 = 4/4+4/4 3 = (4+4+4)/4 4 = (4-4)/4+4 5 = 4^(4-4)+4 6 = (4+4)/4+4 7 = 4+4-4/4 8 = 4+4+4-4 9 = 4/4+4+4 10 = (4*4+4!)/4 11 = (4+4!)/4+4 12 = (4-4/4)*4 13 = (4+4!+4!)/4 14 = 4!/4+4+4 15 = 4*4-4/4 16 = 4*4+4-4 17 = 4*4+4/4 18 = (4*4!-4!)/4 19 = 4!-(4+4/4) 20 = (4/4+4)*4 21 = 4!+4/4-4 22 = 4!-(4+4)/4 23 = 4!-4^(4-4) 24 = 4*4+4+4 25 = 4!+(4/4)^4 26 = 4!+4!/4-4 27 = 4!+4-4/4 28 = (4+4)*4-4 29 = 4/4+4!+4 30 = (4*4!+4!)/4 31 = (4+4!)/4+4! 32 = 4^4/(4+4) 33 = (4-.4)/.4+4! 34 = 4!/4+4+4! 35 = (4.4/.4)+4! 36 = (4+4)*4+4 37 = 4/.4+4+4! 38 = 44-4!/4 39 = (4*4-.4)/.4 40 = (4^4/4)-4! 41 = (4*4+.4)/.4 42 = 4!+4!-4!/4 43 = 44-4/4 44 = 4*4+4+4! 45 = (4!/4)!/(4*4) 46 = (4!-4)/.4 - 4 47 = 4!+4!-4/4 48 = (4*4-4)*4 49 = 4!+4!+4/4 50 = (4*4+4)/.4 51 = 4!/.4-4/.4 52 = 44+4+4 53 = 44+4/.4 54 = (4!/4)^4/4! 55 = (4!-.4)/.4-4 56 = 4!+4!+4+4 57 = 4/.4+4!+4! 58 = (4^4-4!)/4 59 = 4!/.4-4/4 60 = 4*4*4-4 61 = 4!/.4+4/4 62 = (4!+.4+.4)/.4 63 = (4^4-4)/4 64 = 4^(4-4/4) 65 = 4^4+4/4 66 = (4+4!)/.4-4 67 = (4+4!)/.4+4 68 = 4*4*4+4 69 = (4+4!-.4)/.4 70 = (4^4+4!)/4 71 = (4!+4.4)/.4 72 = (4-4/4)*4! 73 = (.4√4+.4)/.4 74 = (4+4!)/.4+4 75 = (4!/4+4!)/.4 76 = (4!-4)*4-4 77 = (4!-.4)/.4+4! 78 = (4!*.4+4!)/.4 79 = (.4√4-.4)/.4 80 = (4*4+4)*4 81 = (4/4-4)^4 82 = 4!/.4+4!+4 83 = (4!-.4)/.4+4! 84 = (4!-4)*4+4 85 = (4/.4+4!)/.4 86 = (4-.4)*4!-.4 87 = 4!*4-4/.4 88 = 4^4/4+4! 89 90 = (4!/4)!/(4+4) 91 92 = (4!-4/4)*4 93 94 = (4+4!)/.4 + 4! 95 = 4!*4-4/4 96 = 4!*4+4-4 97 = 4!*4+4/4 98 = (4!+.4)*4+.4 99 = (4!+4!-4)/.4 100 = 4*4/(.4*.4)
(4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4) ÷ 4 = 27
4 +4+4+4+4+4+4+4+4=40
Sure, using the number 4 four times, you can create the numbers 1 to 20 as follows: 1 = 4 / 4 + 4 - 4 2 = 4 / 4 + 4 / 4 3 = 4 - 4 / 4 + 4 4 = 4 + 4 - 4 - 4 5 = 4 + 4 / 4 6 = 4 + 4 - 4 / 4 7 = 4 + 4 / 4 + 4 8 = 4 + 4 + 4 / 4 9 = (4 + 4) / (4 / 4) 10 = 4 + 4 + 4 - 4 11 = 4 + 4 + 4 / 4 12 = 4 + 4 + 4 + 4 13 = (4 + 4) / 4 + 4 14 = 4 * 4 - 4 / 4 15 = 4 + 4 + 4 + 4 - 4 16 = 4 * 4 - 4 + 4 17 = 4 * 4 + 4 / 4 18 = (4 + 4) * (4 - 4) 19 = 4 * 4 + 4 - 4 20 = 4 * 4 + 4 / 4
The primes required are: 2 = (4+4)/4 3 = (4+4+4)/4 5 = (4+4+4+4+4)/4 7 = (4*4+4+4+4)/4 11 = (4(4*4-4)-4)/4 13 = (4*(4*4-4)+4)/4 17 = (4*4*4+4)/4 19 = (4*(4*4+4)-4)/4 23 = (4*(4*4+4+4)-4)/4 29 = (4*(4*4+4+4+4)+4)/4 31 = (4*4*(4+4)-4)/4 37 = (4*4*(4+4)+4*4+4)/4 41 = (4^4-4*(4*4)+4)/4 43 = (4^4-4(4*4+4+4))/4 47 = (4^4-4*4*4-4)/4 The remainder are left as an exercise. It should be noted that most of these are impossible to express with only six fours without either defining new operators or allowing for facetious, unmathematical cheats such as allowing 44 to be used.
1 = 44 / 442 = 4 * 4 / (4 + 4)3 = (4 + 4 + 4) / 44 = 4 + (4 * (4 - 4))5 = (4 + (4 * 4)) / 46 = 4 + ((4 + 4) / 4)7 = (44 / 4) - 48 = 4 + 4 + 4 - 49 = 4 + 4 + (4 / 4)10 = (44 - 4) / 411 = (4 / 4) + (4 / .4)12 = (4 + 44) / 413 = 4 + ((4 - .4) / .4)14 = (4 * (4 - .4)) - .415 = 4 + (44 / 4)16 = (44 - 4) * .417 = (4 * 4) + (4 / 4)18 = (44 * .4) + .419 = (4 + 4 - .4) / .420 = 4 * (4 + (4 / 4))
(4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4+4) / 4 = 17
4 4 4 44 4 4 4 44 4 4 4 44 4 4 4 4 4 4 4 4 34 4 4 4