To simplify the expression (7y^2 - 5y^2), you subtract the coefficients of the like terms. This results in ( (7 - 5)y^2 = 2y^2). Therefore, the simplified expression is (2y^2).
5y+8=7y subtract 5y from each side , 5y+8=7y -5y -5y 8=2y /2 /2 4=y
7y + 4 = 5y - 6Subtract 4 from each side:7y = 5y - 10Subtract 5y from each side:2y = -10Divide each side by 2:y = -5
To simplify the expression ( 6(4x - (2 - 5y + 2x) + 2y) ), first simplify inside the parentheses: ( 2 - 5y + 2x ) becomes ( 4x - 2 + 5y + 2y = 4x + 7y - 2 ). Thus, the expression simplifies to ( 6(4x - (4x + 7y - 2) + 2y) = 6(-7y + 2) = -42y + 12 ). Therefore, the final result is ( -42y + 12 ).
If you mean: 3y^2-7y+3-5y+3-4y^2 then it is simplified to -y^2-12y+6
1 + 7y = 5x - 2 7y = 5x - 3 - 5x = - 7y - 3 x = 7/5y + 3/5 ---------------------
5y+8=7y subtract 5y from each side , 5y+8=7y -5y -5y 8=2y /2 /2 4=y
7y + 4 = 5y - 6Subtract 4 from each side:7y = 5y - 10Subtract 5y from each side:2y = -10Divide each side by 2:y = -5
5y+8 = 7y-6 5y-7y = -6-8 -2y = -14 y = 7
d) 4(3y - 1) - 6 = 5(y + 2) 12y−10=5y+10 12y−10−5y=5y+10−5y 7y−10=10 7y−10+10=10+10 7y=20 ‌ 7y 7 ‌‌ 20 7 ‌
7y - 6 = 5y - 147y - 5y = 6 - 142y = -8y = -8 ÷ 2y = -4
To simplify the expression ( 6(4x - (2 - 5y + 2x) + 2y) ), first simplify inside the parentheses: ( 2 - 5y + 2x ) becomes ( 4x - 2 + 5y + 2y = 4x + 7y - 2 ). Thus, the expression simplifies to ( 6(4x - (4x + 7y - 2) + 2y) = 6(-7y + 2) = -42y + 12 ). Therefore, the final result is ( -42y + 12 ).
If you mean: 3y^2-7y+3-5y+3-4y^2 then it is simplified to -y^2-12y+6
5y+8=7y 2y=8 y=4
-3
1 + 7y = 5x - 2 7y = 5x - 3 - 5x = - 7y - 3 x = 7/5y + 3/5 ---------------------
5y explanaition 5x-5x=0, 0-2y=-2y, -2y+7y=5y
To find the product of the expressions ((4x - 5y + 3)) and ((2x + 7y - 7)), apply the distributive property (also known as the FOIL method for binomials). When multiplied, you get: [ (4x)(2x) + (4x)(7y) + (4x)(-7) - (5y)(2x) - (5y)(7y) - (5y)(-7) + (3)(2x) + (3)(7y) + (3)(-7) ] Combining all the terms results in: [ 8x^2 + 28xy - 28x - 10xy - 35y^2 + 35 + 6x + 21y - 21 ] Combining like terms yields: [ 8x^2 + (28xy - 10xy) + (-28x + 6x) + (-35y^2 + 21y) + (35 - 21) ] The final simplified expression is: [ 8x^2 + 18xy - 22x - 35y^2 + 14 ]