to hard forget it
Chat with our AI personalities
p v = n r t v = n r t / p
please excuse my dear aunt sally a x u i d u r p l v d b e o t i i t n n i s t r t e p i i a h n l o o c e t i n n t s s c i e a o s t n i o n
Proof: P{T>n+m/T>n}=P{T>n+m,T>n}/P{T>n} (Bayes theorem) =P{T>n+m}/P{T>n} =((1-p)^(n+m))/(1-p)^n = (1-p)^(n+m-n) = (1-p)^m (1-p)^m = {T>m} So T>m has the same probability as T>m+n given that T>n, which means it doesn't care (or don't remember) that n phases had passed.
Means, Proportions and Variance (One population) H_0:μ=μ_0 assuming σ is known z=(x ̅-μ)/(σ⁄√n) N(0,1) NA H_0:μ=μ_0 assuming σ is unknown t=(x ̅-μ)/(s⁄√n) Student t(υ) ν=n-1 H_0:p=p_0 p ̂=x/n or p ̂=(x+2)/(n+4) z=(p ̂-p)/√((p(1-p))/n) N(0,1) NA H_0:σ^2=σ_0^2 u=((n-1) s^2)/σ^2 χ^2 (υ) ν=n-1
Multiplying by a negative changes the sign of the original number. P x N = N N x N = P Multiplying by a positive keeps the sign of the original number. P x P = P N x P = N