As far as I'm aware a PDE can't be solved explicitly because of the nature of the equation. However, you can separate the variables of a PDE essentially turning it into multiple ODEs which then can be solved explicitly.
The draw back of this is that most terms in a PDE are a combination of variables, such as 3xy+2yz+xyz, rather than being separated neatly already (making separation into ODEs easy), such as x+y+z. In cases where the variables are jumbled up with each other, there are often faster and easier ways of solving the PDE than trying to separate the variables into ODEs and solving explicitly.
Chat with our AI personalities
ordinary differential equation is obtained only one independent variable and partial differential equation is obtained more than one variable.
Yes, it is.
Some partial differential equations do not have analytical solutions. These can only be solved numerically.
All the optimization problems in Computer Science have a predecessor analogue in continuous domain and they are generally expressed in the form of either functional differential equation or partial differential equation. A classic example is the Hamiltonian Jacobi Bellman equation which is the precursor of Bellman Ford algorithm in CS.
An ordinary differential equation is an equation relating the derivatives of a function to the function and the variable being differentiated against. For example, dy/dx=y+x would be an ordinary differential equation. This is as opposed to a partial differential equation which relates the partial derivatives of a function to the partial variables such as d²u/dx²=-d²u/dt². In a linear ordinary differential equation, the various derivatives never get multiplied together, but they can get multiplied by the variable. For example, d²y/dx²+x*dy/dx=x would be a linear ordinary differential equation. A nonlinear ordinary differential equation does not have this restriction and lets you chain as many derivatives together as you want. For example, d²y/dx² * dy/dx * y = x would be a perfectly valid example