It is to convert a function into a sum of sine (or cosine) functions so as to simplify its analysis.
Chat with our AI personalities
Fourier analysis began with trying to understand when it was possible to represent general functions by sums of simpler trigonometric functions. The attempt to understand functions (or other objects) by breaking them into basic pieces that are easier to understand is one of the central themes in Fourier analysis. Fourier analysis is named after Joseph Fourier who showed that representing a function by a trigonometric series greatly simplified the study of heat propagation. If you want to find out more, look up fourier synthesis and the fourier transform.
Fourier series is the sum of sinusoids representing the given function which has to be analysed whereas discrete fourier transform is a function which we get when summation is done.
Yes. For example: A square wave has a Fourier series.
A Fourier series is a set of harmonics at frequencies f, 2f, 3f etc. that represents a repetitive function of time that has a period of 1/f. A Fourier transform is a continuous linear function. The spectrum of a signal is the Fourier transform of its waveform. The waveform and spectrum are a Fourier transform pair.
Fourier transform and Laplace transform are similar. Laplace transforms map a function to a new function on the complex plane, while Fourier maps a function to a new function on the real line. You can view Fourier as the Laplace transform on the circle, that is |z|=1. z transform is the discrete version of Laplace transform.