answersLogoWhite

0

A partial derivative is the derivative of a function of more than one variable with respect to only one variable. When taking a partial derivative, the other variables are treated as constants. For example, the partial derivative of the function f(x,y)=2x2 + 3xy + y2 with respect to x is:
?f/?x = 4x + 3y
here we can see that y terms have been treated as constants when differentiating.

The partial derivative of f(x,y) with respect to y is:
?f/?y = 3x + 2y
and here, x terms have been treated as constants.

User Avatar

Wiki User

12y ago

Still curious? Ask our experts.

Chat with our AI personalities

ReneRene
Change my mind. I dare you.
Chat with Rene
BeauBeau
You're doing better than you think!
Chat with Beau
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake

Add your answer:

Earn +20 pts
Q: What is a partial derivative?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What are the applications of partial derivatives in real analysis?

what are the applications of partial derivative in real analysis.


What is the difference between total differentiation and partial differentiation?

Suppose, Z is a function of X and Y. In case of Partial Differentiation of Z with respect to X, all other variables, except X are treated as constants. But, total derivative pf z is given by, dz=(partial derivative of z w.r.t x)dx + (partial derivative of z w.r.t y)dy


What is geometrical representation of partial derivatives?

The partial derivative of z=f(x,y) have a simple geometrical representation. Suppose the graph of z = f (x y) is the surface shown. Consider the partial derivative of f with respect to x at a point. Holding y constant and varying x, we trace out a curve that is the intersection of the surface with the vertical plane. The partial derivative measures the change in z per unit increase in x along this curve. Thus, it is just the slope of the curve at a value of x. The geometrical interpretation of is analogous in both types of derivatives, i.e., Ordinary and Partial Derivatives


Definition of partial differential equation with example?

A partial derivative is the derivative in respect to one dimension. You can use the rules and tricks of normal differentiation with partial derivatives if you hold the other variables as constants, but the actual definition is very similar to the definition of a normal derivative. In respect to x, it looks like: fx(x,y)=[f(x+Δx,y)-f(x,y)]/Δx and in respect to y: fy(x,y)=[f(x,y+Δy)-f(x,y)]/Δy Here's an example. take the function z=3x2+2y we want to find the partial derivative in respect to x, so we can use basic differentiation techniques if we treat y as a constant, so zx'=6x+0 because the derivative of a constant (2y in this case) is always 0. this applies to any number of dimensions. if you were finding the partial in respect to a of f(a,b,c,d,e,f,g), you would just differentiate as normal and hold b through g as constants.


Why is the partial differential equation important?

Partial differential equations are great in calculus for making multi-variable equations simpler to solve. Some problems do not have known derivatives or at least in certain levels in your studies, you don't possess the tools needed to find the derivative. So, using partial differential equations, you can break the problem up, and find the partial derivatives and integrals.