In a statistical model, you have two kinds of variable. Response variables are the "outputs" of your model. Explanatory variables, on the other hand, are the "inputs" of your model. Response variables are dependent on the explanatory variables. Explanatory variable are independent of the response variables.
Imagine you were trying to formulate a statistical model of your car's fuel economy. The "output" of your model is miles per gallon (or kilometres per litre). That's your response variable. "Inputs" into your model might be (for example) engine capacity, number of cylinders, tyre pressure, etc. These are your explanatory variables. That is, fuel economy may be, or is, (to be determined by the modeling) dependent on engine capacity and/or number of cylinders and/or tyre pressure, etc.
after the treatment
Chat with our AI personalities
The dependent variable.
lurking
As the explanatory variable increases, the response variable increases
y axis
Not useful