the real numbers
There is no specific name. Such numbers include all irrational numbers, all non-integral rational numbers, 0 and 1.
One, and e.
The real number system is the set of numbers on a regular number line. This includes rational and irrational numbers. The imaginary numbers start appearing when you do science, engineering, and electricity.
The numbers called that are used in exponents can be called as a power of a number. The power or exponent can be positive , negative , zero .
the real numbers
17. Rational numbers are numbers that can be written as a fraction. Irrational numbers cannot be expressed as a fraction.
Imaginary numbers are not intrinsically rational or irrational.Of course, all real numbers are either rational or irrational numbers.Imaginary numbers are not real numbers.Imaginary numbers have a real part and an imaginary part, sometimes written like z=x+i y.The two parts, i.e. the x and the y, are real numbers. As real numbers, they are either rational or irrational. Its just that the two parts of a complex number may both be either rational or irrational or one may be rational and the other irrational. One could always make up a new name for these cases, but right now there is no such classification.
Together, the two sets comprise the set of real numbers.
If I understand your question, the answer is 'no', because all integers are rational numbers.
There is no specific name. Such numbers include all irrational numbers, all non-integral rational numbers, 0 and 1.
One, and e.
Numbers that can't be expressed as fractionsAn irrational number is any real number that cannot be expressed as a ratio a/b, where a and b are integers, with b non-zero, and is therefore not a rational number. This means that an irrational number cannot be represented as a simple fraction. Irrational numbers are also those real numbers that cannot be represented as terminating or repeating decimals.
An irrational number is a number that can't be expressed by a fraction having integers in both its numerator and denominator. A rational number can be.A rational number is defined to be a number that can be expressed as the ratio of two integers. An irrational number is any real number that is not rational. A rational number is a number that can be expressed as a fraction. An irrational number is one that can not.Some examples of rational numbers would be 5, 1.234, 5/3, or -3Some examples of irrational numbers would be π, the square root of 2, the golden ratio, or the square root of 3.A rational number is a number that either has a finite end or a repeating end, such as .35 or 1/9 (which is .1111111 repeating).An irrational number has an infinite set of numbers after the decimal that never repeat, such a the square root of 2 or pi.A rational number is one that can be expressed as a ratio of two integers, x and y (y not 0). An irrational number is one that cannot be expressed in such a form.In terms of decimal numbers, a rational number has a decimal representation that is terminating or [infinitely] recurring. The decimal representation for an irrational is neither terminating nor recurring. (Recurring decimals are also known as repeating decimals.)A rational number is a number that can be expressed as a fraction. An irrational number is one that can not.Some examples of rational numbers would be 5, 1.234, 5/3, or -3Some examples of irrational numbers would be π, the square root of 2, the golden ratio, or the square root of 3.An irrational number is a number that can't be expressed by a fraction having integers in both its numerator and denominator. A rational number can be.A rational number can be represented by a ratio of whole numbers. An irrational number cannot. There are many more irrational numbers than there are rational numbersRational numbers are numbers that can be written as a fraction. Irrational numbers cannot be expressed as a fraction.A rational number can be expressed as a fraction, with integers in the numerator and the denominator. An irrational number can't be expressed in that way. Examples of irrational numbers are most square roots, cubic roots, etc., the number pi, and the number e.A rational number can always be written as a fractionwith whole numbers on the top and bottom.An irrational number can't.A rational number can always be written as a fraction with whole numbers on top and bottom.An irrational number can't.Any number that you can completely write down, with digits and a decimal pointor a fraction bar if you need them, is a rational number.A rational number can be expressed as a fraction whereas an irrational can not be expressed as a fraction.Just look at the definition of a rational number. A rational number is one that can be expressed as a fraction, with integers (whole numbers) in the numerator and the denominator. Those numbers that can't be expressed that way - for example, the square root of 2 - are said to be irrational.A rational number is any number that can be written as a ratio or fraction. If the decimal representation is finite orhas a repeating set of decimals, the number is rational.Irrational numbers cannot be reached by any finite use of the operators +,-, / and *. These numbers include square roots of non-square numbers, e.g.√2.Irrational numbers have decimal representations that never end or repeat.Transcendental numbers are different again - they are irrational, but cannot be expressed even with square roots or other 'integer exponentiation'. They are the numbers in between the numbers between the numbers between the integers. Famous examples includee or pi (π).By definition: a rational number can be expressed as a ratio of two integers, the second of which is not zero. An irrational cannot be so expressed.One consequence is that a rational number can be expressed as a terminating or infinitely recurring decimal whereas an irrational cannot.This consequence is valid whatever INTEGER base you happen to select: decimal, binary, octal, hexadecimal or any other - although for non-decimal bases, you will have the "binary point" or "octal point" in place of the decimal point and so on.A rational number can be expressed as a fraction whereas an irrational number can't be expressed as a fractionRational numbers can be expressed as a ratio of two integers, x/y, where y is not 0. Conventionally, y is taken to be greater than 0 but that is not an essential element of the definition. An irrational number is one for which such a pair of integers does not exist.Rational numbers can be expressed as one integer over another integer (a "ratio" of the two integers) whereas irrational numbers cannot.Also, the decimal representation ofa rational number will either: terminate (eg 31/250 = 0.124); orgo on forever repeating a sequence of digits at the end (eg 41/330 = 0.1242424... [the 24 repeats]);whereas an irrational number will not terminate, nor will there be a repeating sequence of digits at the end (eg π = 3.14159265.... [no sequence repeats]).Rational numbers are numbers that keeps on going non-stop, for example pie. Irrational numbers end. Its as simple as that! Improved Answer:-Rational numbers can be expressed as fractions whereas irrational numbers can't be expressed as fractions.a rational number can be expressed as a fraction in the form a/b (ie as a fraction).a irrational number cannot be expressed as a fraction (e.g. pi, square root of 2 etc)Rational numbers can be represented as fractions.That is to say, if we can write the number as a/b where a and b are any two integers and b is not zero. If we cannot do this, then the number is irrational.For example, .5 is a rational number because we can write it as 5/10=1/2The square root of 2 is irrational because there do not exist integers a and b suchthat square root of 2 equals a/b.Rational numbers can be expressed as fractions whereas irrational numbers can't be expressed as fractions.
It would simply be the irrational square root of a rational number. There is no special name for it.
Real numbers are numbers that can be found on the number line. This includes both the rational and irrational numbers. The Real Numbers did not have a name before Imaginary Numbers were thought of. They got called "Real" because they were not Imaginary.
The real number system is the set of numbers on a regular number line. This includes rational and irrational numbers. The imaginary numbers start appearing when you do science, engineering, and electricity.