Forty-two thousandths
tan(9) + tan(81) - tan(27) - tan(63) = 4
762+80=842
tan (A-B) + tan (B-C) + tan (C-A)=0 tan (A-B) + tan (B-C) - tan (A-C)=0 tan (A-B) + tan (B-C) = tan (A-C) (A-B) + (B-C) = A-C So we can solve tan (A-B) + tan (B-C) = tan (A-C) by first solving tan x + tan y = tan (x+y) and then substituting x = A-B and y = B-C. tan (x+y) = (tan x + tan y)/(1 - tan x tan y) So tan x + tan y = (tan x + tan y)/(1 - tan x tan y) (tan x + tan y)tan x tan y = 0 So, tan x = 0 or tan y = 0 or tan x = - tan y tan(A-B) = 0 or tan(B-C) = 0 or tan(A-B) = - tan(B-C) tan(A-B) = 0 or tan(B-C) = 0 or tan(A-B) = tan(C-B) A, B and C are all angles of a triangle, so are all in the range (0, pi). So A-B and B-C are in the range (- pi, pi). At this point I sketched a graph of y = tan x (- pi < x < pi) By inspection I can see that: A-B = 0 or B-C = 0 or A-B = C-B or A-B = C-B +/- pi A = B or B = C or A = C or A = C +/- pi But A and C are both in the range (0, pi) so A = C +/- pi has no solution So A = B or B = C or A = C A triangle ABC has the property that tan (A-B) + tan (B-C) + tan (C-A)=0 if and only if it is isosceles (or equilateral).
21/50
042
The state that issues social security numbers with the 042 prefix is the state of Michigan.
.042*21140.44=887.89848
Forty-two thousandths
Revolver in 38 Spl
True Confessions - 1985 Undue Pressure 042 was released on: USA: 15 October 1986
tan(9) + tan(81) - tan(27) - tan(63) = 4
For lodging complaints in person:Chief Minister's Compaint cell3, Club Road. G.O.R.1, LahoreTel: 042-99201614, 042-99203939Fax: 042-99204915-16For lodging complaints by email, post, phone or faxChief Minister's Complaint Cell8, Club Road, G.O.R.1, LahoreTel: 042-99204906-14 Fax: 042-99204915eMail: cmcomplaintcell@cmpunjab.gov.pkFor posting your queries, comments, suggestions on the functioning of the Punjab government:See the link below.
Tan Tan
The correct answer is 0.0
762+80=842
This may not be the most efficient method but ... Let the three angle be A, B and C. Then note that A + B + C = 20+32+38 = 90 so that C = 90-A+B. Therefore, sin(C) = sin[(90-(A+B) = cos(A+B) and cos(C) = cos[(90-(A+B) = sin(A+B). So that tan(C) = sin(C)/cos(C) = cos(A+B) / sin(A+B) = cot(A+B) Now, tan(A+B) = [tan(A)+tan(B)] / [1- tan(A)*tan(B)] so cot(A+B) = [1- tan(A)*tan(B)] / [tan(A)+tan(B)] The given expressin is tan(A)*tan(B) + tan(B)*tan(C) + tan(C)*tan(A) = tan(A)*tan(B) + [tan(B) + tan(A)]*cot(A+B) substituting for cot(A+B) gives = tan(A)*tan(B) + [tan(B) + tan(A)]*[1- tan(A)*tan(B)]/[tan(A)+tan(B)] cancelling [tan(B) + tan(A)] and [tan(A) + tan(B)], which are equal, in the second expression. = tan(A)*tan(B) + [1- tan(A)*tan(B)] = 1