445
1000
The answer is easy if you are familiar with scientific notation. The antilog of a number, whose integer part is n, has 10n in its scientific notation. Otherwise: the number that you want the antilog for will normally be in decimal form: consisting of an integer part, a decimal point and a fractional part. The number of integer digits in the antilog is one more than the integer part of the number being "antilogged" (exponentiated). antilog(0.1234) = 1.3286*100 = 1.3286 antilog(1.1234) = 1.3286*101 = 13.286 antilog(5.1234) = 1.3286*105 = 132860 antilog(-3.1234) = 1.3286*10-3 = 0.0013286
If a number has an antilog whose integer part is n, then the number has n-1 digits before the decimal point.
445 micrograms = 0.445 milligrams 445 milligrams = 445,000 micrograms
Raise 10 to the power of the number. The antilog of 2 is 102 = 100 The antilog of 5 is 105 = 10,000 The antilog of 'pi' is 103.1416 = 1,385.46 (rounded)
how to find antilog(20/2) answer
It is 1013.309 . If your pocket calculator doesn't do 10x then you use antilog tables. It's a big number. 1013 x antilog of 0.309 might be more handy.
Assuming base-10 logarithms the antilog of 2.068 is 116.95 (to two decimal places).
445
56
1000
29% of 445= 29% * 445= 0.29 * 445= 129.05
51% of 445= 51% * 445= 0.51 * 445= 226.95
The answer is easy if you are familiar with scientific notation. The antilog of a number, whose integer part is n, has 10n in its scientific notation. Otherwise: the number that you want the antilog for will normally be in decimal form: consisting of an integer part, a decimal point and a fractional part. The number of integer digits in the antilog is one more than the integer part of the number being "antilogged" (exponentiated). antilog(0.1234) = 1.3286*100 = 1.3286 antilog(1.1234) = 1.3286*101 = 13.286 antilog(5.1234) = 1.3286*105 = 132860 antilog(-3.1234) = 1.3286*10-3 = 0.0013286
The value of antilog(1.0913) depends on the base to which the logarithm was taken. Antilog(1.0913) = Base1.0913. The two most common bases are e = 2.71828 (approx) and 10. If the base was e, then antilog(1.0913) = e1.0913 = 2.978 If the base was 10, then antilog(1.0913)= 101.0913 = 12.340
Assuming working to base '10' , then Antilog 2.3909 is 10^(2.3909) = 245.9801149/ Remember for logarithms. log of a number is log(10)[number] Hence its antilog is 10^(log number).