Chat with our AI personalities
The pair of equations have one ordered pair that is a solution to both equations. If graphed the two lines will cross once.
The three types of linear equations are: Consistent Dependent, Consistent Independent, and Inconsistent.
A consistent system of equations is one in which there is at least one set of values for the variables that satisfies all the equations simultaneously. In graphical terms, this means that the lines or planes represented by the equations intersect at one or more points. A consistent system can be classified as either independent (with a unique solution) or dependent (with infinitely many solutions). In contrast, an inconsistent system has no solutions, meaning the equations represent parallel lines or planes that do not intersect.
Independence:The equations of a linear system are independent if none of the equations can be derived algebraically from the others. When the equations are independent, each equation contains new information about the variables, and removing any of the equations increases the size of the solution set.Consistency:The equations of a linear system are consistent if they possess a common solution, and inconsistent otherwise. When the equations are inconsistent, it is possible to derive a contradiction from the equations, such as the statement that 0 = 1.Homogeneous:If the linear equations in a given system have a value of zero for all of their constant terms, the system is homogeneous.If one or more of the system's constant terms aren't zero, then the system is nonhomogeneous.
A system of linear equations that has at least one solution is called consistent.