answersLogoWhite

0

A countable set is an infinite set that can be put into a one-to one correspondence with the counting numbers. In other words, it is possible to arrange all of the elements of the set in a sequence with a first element, a second element, and so on.

Georg Cantor proved that the rational numbers are countable, but the real numbers are not.

One proof (not Cantor's) that the rationals are countable: Choose any rational number, write it out in its simplest form. Whatever number you wrote is represented by a finitely long string of either the numerals or the division slash (possibly preceded the negative sign). If you consider a base-eleven number system with the division slash as the eleventh numeral, then whatever rational number you just wrote out corresponds directly and unambiguously to one specific integer. Since there exists a mapping scheme that assigns any arbitrary rational number to a specific integer, the rational numbers are countable.

User Avatar

Wiki User

12y ago

Still curious? Ask our experts.

Chat with our AI personalities

ReneRene
Change my mind. I dare you.
Chat with Rene
BeauBeau
You're doing better than you think!
Chat with Beau
JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan

Add your answer:

Earn +20 pts
Q: What is countable set in measure theory?
Write your answer...
Submit
Still have questions?
magnify glass
imp