The UNION of two sets is the set of elements which are in either set. For example: let C = (4, 5, 6) and let D = (6, 7, 8). Now the UNION of C and D, written C D = (4, 5, 6, 7, 8). There is no need to list the 6 twice. The INTERSECTION of two sets is the set of elements which are in both sets. For example: let C = (4, 5, 6) and D = (6, 7, 8). The INTERSECTION of C and D, written C D = (6).
I am assuming this is an arithmetic series. Use the formula nth term = a + (n-1)d where a is the 1st term, and d is the difference between each term. 10th term = 8 + (10-1)d ==>8 +9d=53 ==> 9d = 53-8 = 45 ==> d = 5 The difference is 5.
cube
-6
8
The UNION of two sets is the set of elements which are in either set. For example: let C = (4, 5, 6) and let D = (6, 7, 8). Now the UNION of C and D, written C D = (4, 5, 6, 7, 8). There is no need to list the 6 twice. The INTERSECTION of two sets is the set of elements which are in both sets. For example: let C = (4, 5, 6) and D = (6, 7, 8). The INTERSECTION of C and D, written C D = (6).
For an A.P., nth term of the sequence is given by 5 + (n-1)d, where d is the common difference.
I am assuming this is an arithmetic series. Use the formula nth term = a + (n-1)d where a is the 1st term, and d is the difference between each term. 10th term = 8 + (10-1)d ==>8 +9d=53 ==> 9d = 53-8 = 45 ==> d = 5 The difference is 5.
How about I just give it to you now! :) Intro: G--------|------------------------|------------------| D--------|------------------------|------------------| A-3--1-3-|-----------------3--1-3-|------------------| E--------|-6--4--3--4--6--8-------|-6--4--3--4--6--8-| G-------------------------------------------------------| D-------------------------------------------------------| A--3-3-3-3-3-3-3-3-3-3-10-10-10-10-10-10-8-8-8-8-8-8-8--| E-------------------------------------------------------| G---------------------------------------------| D---------------------------------------------| A-6-6-6-6-6-6-6-6-6-6-6-5-5-5-5-5-5-5-5-5-1-3-| E---------------------------------------------| Verse: G--------|------------------------|------------------| D--------|------------------------|------------------| A-3--1-3-|-----------------3--1-3-|------------------| E--------|-6--4--3--4--6--8-------|-6--4--3--4--6--8-| Chorus: G|-----------------------------------------------------------------| D|---------------4----6----------3/5-------------------------------| A|--6----------4---4-----3-3-3-3----------------6/8*---------------| E|----6-6-6-4--------------------------6-6-6-6--------4-444444444--| Play the Verse for Solo: G--------|------------------------|------------------| D--------|------------------------|------------------| A-3--1-3-|-----------------3--1-3-|------------------| E--------|-6--4--3--4--6--8-------|-6--4--3--4--6--8-| Outro: G-------------------------------------------------------| D-------------------------------------------------------| A--3-3-3-3-3-3-3-3-3-3-10-10-10-10-10-10-8-8-8-8-8-8-8--| E-------------------------------------------------------| G-------------------------------------------5-| D---------------------------------------------| A-6-6-6-6-6-6-6-6-6-6-6-5-5-5-5-5-5-5-5-5-1-3-| E---------------------------------------------| The End...
D
The given sequence 6, 8, 10, 12 is an arithmetic sequence with a common difference of 2 between each term. To find the nth term of an arithmetic sequence, you can use the formula: (a_n = a_1 + (n-1)d), where (a_n) is the nth term, (a_1) is the first term, (n) is the term number, and (d) is the common difference. In this case, the first term (a_1) is 6 and the common difference (d) is 2. So, the nth term (a_n = 6 + (n-1)2 = 2n + 4).
<!--StartFragment-->Riff 1: e|-----------------------| B|--8-9---9/13-11---8-9--| G|-----------------------| D|-----------------------| A|-----------------------| E|-----------------------| Riff 2: x3 e|------------------------------| B|-------8-9---9/13-11---8-9--9-| G|-10-10------------------------| D|------------------------------| A|------------------------------| E|------------------------------| e|---------------------------------------| B|--------8-9--9/13-11-13-13-13-13-13-13-| G|-10-10---------------------------------| D|---------------------------------------| A|---------------------------------------| E|---------------------------------------| e|---------------------------------------| B|-13-13-13-13-13-13-13------------------| G|---------------------------------------| D|---------------------------------------| A|---------------------------------------| E|---------------------------------------| Verse: F G# D# A# e|--1----4----6----6---| B|--1----4----8----6---| G|--2----5----8----7---| D|--3----6----8----8---| A|--3----6----6----8---| E|--1----4---------6---| Chorus: C#5 G#5 D#5 F5 x3 C#5 G#5 C5 e|---------------------------------------| B|---------------------------------------| G|--6---------8------------6---------5---| D|--6----6----8----3-------6----6----5---| A|--4----6----6----3-------4----6----3---| E|-------4---------1------------4--------| Outro: x3 e|--------------------------------------| B|--------------------------------------| G|--------------------------------------| D|--------------------------------------| A|-------4-4-4-6-6-6-5-5-5--------------| E|-1-1-1-------------------4-4-4-0-0-0--| e|--------------------------------------| B|--------------------------------------| G|--------------------------------------| D|--------------------------6-6-2-2-----| A|-------4-4-4-6-6-6-5-5-5--6-6-2-2-----| E|-1-1-1--------------------4-4-0-0-----|
4-1-1-4-6-5-7-8-8-8-5-7-5-d-1-9-8-4-9-6-8-4-d-v-b-3
6 12 18 248 16 24answer is 24
cilinder
cube
Marcus Welby M-D- - 1969 Feedback 6-8 was released on: USA: 29 October 1974