The given sequence is decreasing by 2 each time, starting from 12. To find the nth term, we can use the formula for an arithmetic sequence: (a_n = a_1 + (n-1)d), where (a_n) is the nth term, (a_1) is the first term, (n) is the term number, and (d) is the common difference. In this case, (a_1 = 12), (d = -2), and we need to find the general formula for the nth term. Therefore, the nth term for the sequence 12 10 8 6 4 is (a_n = 12 + (n-1)(-2)), which simplifies to (a_n = 14 - 2n).
This is an arithmetic sequence which starts at 14, a = 14, and with a common difference of -1, d = -1. We can use the nth term formula an = a + (n - 1)d to get an = 14 + (n - 1)(-1) = 14 - n + 1 = 15 - n.
Tn = 10 + n2
To find the nth term of a sequence, we first need to find the pattern or rule that governs the sequence. By examining the differences between consecutive terms, we can see that the sequence is increasing by 6, 10, 14, 18, and so on. This means that the nth term is given by the formula n^2 + 4, where n represents the position of the term in the sequence.
The nth term would be -2n+14 nth terms: 1 2 3 4 Sequence:12 10 8 6 This sequence has a difference of -2 Therefore it would become -2n. Replace n with 1 and you would get -2. To get to the first term you have to add 14. Therefore the sequence becomes -2n+14. To check your answer replace n with 2, 3 or 4. You will still obtain the number in the sequence that corresponds to the nth term. :)
The given sequence (7, 14, 21, 28, 35,....) is an arithmetic sequence where each term increases by 7. The nth term of the given sequence is 7n
They are: nth term = 6n-4 and the 14th term is 80
This is an arithmetic sequence which starts at 14, a = 14, and with a common difference of -1, d = -1. We can use the nth term formula an = a + (n - 1)d to get an = 14 + (n - 1)(-1) = 14 - n + 1 = 15 - n.
Tn = 10 + n2
Clearly here the nth term isn't n25.
To find the nth term of a sequence, we first need to find the pattern or rule that governs the sequence. By examining the differences between consecutive terms, we can see that the sequence is increasing by 6, 10, 14, 18, and so on. This means that the nth term is given by the formula n^2 + 4, where n represents the position of the term in the sequence.
The nth term would be -2n+14 nth terms: 1 2 3 4 Sequence:12 10 8 6 This sequence has a difference of -2 Therefore it would become -2n. Replace n with 1 and you would get -2. To get to the first term you have to add 14. Therefore the sequence becomes -2n+14. To check your answer replace n with 2, 3 or 4. You will still obtain the number in the sequence that corresponds to the nth term. :)
It is: 26-8n
The nth term is: 3n+2 and so the next number will be 20
n'th term: n^2 + 5
The given sequence is an arithmetic sequence with a common difference of 6, as each term increases by 6. To find the nth term of an arithmetic sequence, we use the formula: nth term = a + (n-1)d, where a is the first term, d is the common difference, and n is the term number. In this case, the first term a = 2, the common difference d = 6, and the term number n is not specified. Therefore, the nth term of the sequence 2, 8, 14, 20, 26 is 2 + (n-1)6.
The explicit formula for a sequence is a formula that allows you to find the nth term of the sequence directly without having to find all the preceding terms. To find the explicit formula for a sequence, you need to identify the pattern or rule that governs the sequence. This can involve looking at the differences between consecutive terms, the ratios of consecutive terms, or any other mathematical relationship that exists within the sequence. Once you have identified the pattern, you can use it to create a formula that will generate any term in the sequence based on its position (n) in the sequence.