1
The limit is 0.
Take the limit of the top and the limit of the bottom. The limit as x approaches cos(2*90°) is cos(180°), which is -1. Now, take the limit as x approaches 90° of tan(3x). You might need a graph of tan(x) to see the limit. The limit as x approaches tan(3*90°) = the limit as x approaches tan(270°). This limit does not exist, so we'll need to take the limit from each side. The limit from the left is ∞, and the limit from the right is -∞. Putting the top and bottom limits back together results in the limit from the left as x approaches 90° of cos(2x)/tan(3x) being -1/∞, and the limit from the right being -1/-∞. -1 divided by a infinitely large number is 0, so the limit from the left is 0. -1 divided by an infinitely large negative number is also zero, so the limit from the right is also 0. Since the limits from the left and right match and are both 0, the limit as x approaches 90° of cos(2x)/tan(3x) is 0.
So, we want the limit of (sin2(x))/x as x approaches 0. We can use L'Hopital's Rule: If you haven't learned derivatives yet, please send me a message and I will both provide you with a different way to solve this problem and teach you derivatives! Using L'Hopital's Rule yields: the limit of (sin2(x))/x as x approaches 0=the limit of (2sinxcosx)/1 as x approaches zero. Plugging in, we, get that the limit is 2sin(0)cos(0)/1=2(0)(1)=0. So the original limit in question is zero.
As X approaches infinity it approaches close as you like to 0. so, sin(-1/2)
2
1
The limit is 0.
Take the limit of the top and the limit of the bottom. The limit as x approaches cos(2*90°) is cos(180°), which is -1. Now, take the limit as x approaches 90° of tan(3x). You might need a graph of tan(x) to see the limit. The limit as x approaches tan(3*90°) = the limit as x approaches tan(270°). This limit does not exist, so we'll need to take the limit from each side. The limit from the left is ∞, and the limit from the right is -∞. Putting the top and bottom limits back together results in the limit from the left as x approaches 90° of cos(2x)/tan(3x) being -1/∞, and the limit from the right being -1/-∞. -1 divided by a infinitely large number is 0, so the limit from the left is 0. -1 divided by an infinitely large negative number is also zero, so the limit from the right is also 0. Since the limits from the left and right match and are both 0, the limit as x approaches 90° of cos(2x)/tan(3x) is 0.
So, we want the limit of (sin2(x))/x as x approaches 0. We can use L'Hopital's Rule: If you haven't learned derivatives yet, please send me a message and I will both provide you with a different way to solve this problem and teach you derivatives! Using L'Hopital's Rule yields: the limit of (sin2(x))/x as x approaches 0=the limit of (2sinxcosx)/1 as x approaches zero. Plugging in, we, get that the limit is 2sin(0)cos(0)/1=2(0)(1)=0. So the original limit in question is zero.
lim(x->0) of sin(x)^2/x we use L'Hospital's Rule and derive the top and the bottomd/dx(sin(x)^2/x)=2*sin(x)*cos(x)/1lim(x->0) of 2*sin(x)*cos(x)=2*0*1=0
1 - cos x as x approaches 0. what is the cos of 0? It is 1. So as x approaches 0 cos x approaches 1. 1 - 1 = 0 So as it gets very small the solutions gets smaller.
1
As X approaches infinity it approaches close as you like to 0. so, sin(-1/2)
When the limit as the function approaches from the left, doesn't equal the limit as the function approaches from the right. For example, let's look at the function 1/x as x approaches 0. As it approaches 0 from the left, it travels towards negative infinity. As it approaches 0 from the right, it travels towards positive infinity. Therefore, the limit of the function as it approaches 0 does not exist.
The answer depends on the side from which x approaches 0. If from the negative side, then the limit is negative infinity whereas if from the positive side, it is positive infinity.
Undefined: You cannot divide by zero