answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

EzraEzra
Faith is not about having all the answers, but learning to ask the right questions.
Chat with Ezra
LaoLao
The path is yours to walk; I am only here to hold up a mirror.
Chat with Lao
JudyJudy
Simplicity is my specialty.
Chat with Judy

Add your answer:

Earn +20 pts
Q: What is linear distribution?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the indicated z score if a graph depicts a standard normal variance with the mean 0 and standard deviation of 1?

For a N(0, 1) distribution, no linear transformation is necessary and so the z-score is the value of the coordinate on the horizontal axis.For a N(0, 1) distribution, no linear transformation is necessary and so the z-score is the value of the coordinate on the horizontal axis.For a N(0, 1) distribution, no linear transformation is necessary and so the z-score is the value of the coordinate on the horizontal axis.For a N(0, 1) distribution, no linear transformation is necessary and so the z-score is the value of the coordinate on the horizontal axis.


What is gaussian distribution and what is its significance in least squares analysis?

From a technical perspective, alternative characterizations are possible, for example: The normal distribution is the only absolutely continuous distribution all of whose cumulants beyond the first two (i.e. other than the mean and variance) are zero. For a given mean and variance, the corresponding normal distribution is the continuous distribution with the maximum entropy. In order to make statistical tests on the results it is necessary to make assumptions about the nature of the experimental errors. A common (but not necessary) assumption is that the errors belong to a Normal distribution. The central limit theorem supports the idea that this is a good approximation in many cases. The Gauss-Markov theorem. In a linear model in which the errors have expectation zero conditional on the independent variables, are uncorrelated and have equal variances, the best linear unbiased estimator of any linear combination of the observations, is its least-squares estimator. "Best" means that the least squares estimators of the parameters have minimum variance. The assumption of equal variance is valid when the errors all belong to the same distribution. In a linear model, if the errors belong to a Normal distribution the least squares estimators are also the maximum likelihood estimators. However, if the errors are not normally distributed, a central limit theorem often nonetheless implies that the parameter estimates will be approximately normally distributed so long as the sample is reasonably large. For this reason, given the important property that the error mean is independent of the independent variables, the distribution of the error term is not an important issue in regression analysis. Specifically, it is not typically important whether the error term follows a normal distribution. In a least squares calculation with unit weights, or in linear regression, the variance on the jth parameter, denoted , is usually estimated with where the true residual variance σ2 is replaced by an estimate based on the minimised value of the sum of squares objective function S. The denominator, n-m, is the statistical degrees of freedom; see effective degrees of freedom for generalizations. Confidence limits can be found if the probability distribution of the parameters is known, or an asymptotic approximation is made, or assumed. Likewise statistical tests on the residuals can be made if the probability distribution of the residuals is known or assumed. The probability distribution of any linear combination of the dependent variables can be derived if the probability distribution of experimental errors is known or assumed. Inference is particularly straightforward if the errors are assumed to follow a normal distribution, which implies that the parameter estimates and residuals will also be normally distributed conditional on the values of the independent variables.


Is inductor linear or non linear?

non linear


Why is hcn not linear?

It is linear


Is the relationship between inches and centimeters linear or non linear?

It is linear.