answersLogoWhite

0

Still curious? Ask our experts.

Chat with our AI personalities

BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake
CoachCoach
Success isn't just about winning—it's about vision, patience, and playing the long game.
Chat with Coach
ReneRene
Change my mind. I dare you.
Chat with Rene

Add your answer:

Earn +20 pts
Q: What is n 2 n 1?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the newest Proof about Fermat's last theorem?

PIERRE DE FERMAT' S LAST THEOREM. CASE SPECIAL N=3 AND.GENERAL CASE N>2. . THE CONDITIONS.Z,X,Y,N ARE THE INTEGERS . Z*X*Y*N>0.N>2. Z^3=/=X^3+Y^3 AND Z^N=/=X^N+Y^N. SPECIAL CASE N=3. WE HAVE (X^2+Y^2)^2=X^4+Y^4+2X^2*Y^2. BECAUSE X*Y>0=>2X^2*Y^2>0. SO (X^2+Y^2)^2=/=X^4+Y^4. CASE 1. IF Z^2=X^2+Y^2 SO (Z^2)^2=(X^2+Y^2)^2 BECAUSE (X^+Y^2)^2=/=X^4+Y^4. SO (Z^2)^2=/=X^4+Y^4. SO Z^4=/=X^4+Y^4. CASE 2. IF Z^4=X^4+Y^4 BECAUSE X^4+Y^4.=/= (X^2+Y^2.)^2 SO Z^4=/=(X^2+Y^2.)^2 SO (Z^2)^2=/=(X^2+Y^2.)^2 SO Z^2=/=X^2+Y^2. (1) AND (2)=> Z^4+Z^2=/=X^4+Y^4+X^2+Y^2. SO 2Z^4+2Z^2=/=2X^4+2Y^4+2X^2+Y^2. SO (Z^4+Z^2+2Z^3+Z^4+Z^2-2Z^3)=/=(X^4+X^2+2X^3+X^4+X^2-2X^3)+)(Y^4+Y^2+2Y^3+Y^4+Y^2-2Y^3) SO IF (Z^4+Z^2+2Z^3)/4=(Z^4+Z^2+2Z^3)/4+(Z^4+Z^2+2Z^3)/4 => (Z^4+Z^2-2Z^3)/4=/=(Z^4+Z^2-2Z^3)/4+(Z^4+Z^2-2Z^3/4) AND SO IF (Z^4+Z^2-2Z^3)/4=(Z^4+Z^2-2Z^3)/4+(Z^4+Z^2-2Z^3)./4 => (Z^4+Z^2+2Z^3)/4=/=(Z^4+Z^2+2Z^3)/4+(Z^4+Z^2+2Z^3)/4 BECAUSE (Z^4+Z^2+2Z^3)/4 - (Z^4+Z^2-2Z^3)/4 =Z^3. SO Z^3=/=X^3+Y^3. GENERAL CASE N>2. Z^N=/=X^N+Y^N. WE HAVE [X^(N-1)/2+Y^(N-1)/2]^(N+1)/(N-1)=X^(N+1)/2+Y^(N+1)/2+ H. BECAUSE X*Y>0=>H>0. SO [X^(N-1)/2+Y^(N-1)/2]^(N+1)/(N-1)=/= X^(N+1)/2+Y^(N+1)/2 CASE 1. IF Z^(N-1)/2=X^(N-1)/2+Y^(N-1)/2 SO [Z^(N-1)/2]^(N+1)/(N-1)=[X^(N-1)/2+Y^(N-1)/2 ]^(N+1)/(N-1). BECAUSE [X^(N-1)/2+Y^(N-1)/2 ]^(N+1)/(N-1)=/=X^(N+1)/2+Y(N+1)/2. SO [Z^(N-1)/2]^(N+1)/(N-1)=/=X^(N+1)/2+Y(N+1)/2. SO Z^(N+1)/2=/=X^(N+1)/2+Y^(N+1)/2. CASE 2. IF Z^(N+1)/2=X^(N+1)/2+Y^(N+1)/2 SO [Z^(N+1)/2]^(N-1)/(N+1)=[X^(N+1)/2+Y^(N+1)/2 ]^(N-1)/(N+1) BECAUSE [X^(N+1)/2+Y^(N+1)/2](N-1)/(N+1)=/=X(N-1)/2+Y^(N-1)/2. SO [Z^(N+1)/2]^(N-1)/(N+1)=/=X(N-1)/2+Y^(N-1)/2. SO Z^(N-1)/2=/=X(N-1)/2+Y^(N-1)/2.. SO (1) AND (2)=> Z^(N+1)/2+Z^(N-1)/2=/=X^(N+1)/2+Y^(N+1)/2+X^(N-1)/2+Y^(N-1)/2. SO 2[Z^(N+1)/2+Z^(N-1)/2]=/=2[X^(N+1)/2+Y^(N+1)/2]+2[X^(N-1)/2+Y^(N-1)/2.] SO [Z^(N+1)/2+Z^(N-1)/2+2Z^N ]+[Z^(N+1)/2+Z^(N-1)/2-2Z^N ]=/=[X^(N+1)/2+X^(N-1)/2+2X^N ]+[X^(N+1)/2+X^(N-1)/2-2X^N ]+[Y^(N+1)/2+Y^(N-1)/2+2Y^N ]+[Y^(N+1)/2+Y^(N-1)/2-2Y^N ] SO IF [Z^(N+1)/2+Z^(N-1)/2+2Z^N ]/4=[X^(N+1)/2+X^(N-1)/2+2X^N ] /4+ [Y^(N+1)/2+Y^(N-1)/2+2Y^N ]/4=> [Z^(N+1)/2+Z^(N-1)/2-2Z^N ]/4=/=[X^(N+1)/2+X^(N-1)/2-2X^N ] /4+ [Y^(N+1)/2+Y^(N-1)/2-2Y^N ]/4 AND IF [Z^(N+1)/2+Z^(N-1)/2-2Z^N ]/4=[X^(N+1)/2+X^(N-1)/2-2X^N ] /4+ [Y^(N+1)/2+Y^(N-1)/2-2Y^N ]/4 => [Z^(N+1)/2+Z^(N-1)/2+2Z^N ]/4=/=[X^(N+1)/2+X^(N-1)/2+2X^N ]/4 + [Y^(N+1)/2+Y^(N-1)/2+2Y^N ]/4 BECAUSE [Z^(N+1)/2+Z^(N-1)/2+2Z^N ] /4- [Z^(N+1)/2+Z^(N-1)/2-2Z^N ]/4=Z^N. SO Z^N=/=X^N+Y^N HAPPY&PEACE. Trantancuong.


What is n - 1 - n - 1 - n - 1 if n is 2?

2-1-2-1-2-1 1-2-1-2-1 -1-1-2-1 -2-2-1 -4-1 -5 Answer=-5


Evaluate the expression f left parenthesis n plus 2 right parenthesis minus f left parenthesis n right paren given that f left paren n right paren equals 1 over 2 n left paren n plus 2 right paren?

A very good try, but f(n) is still ambiguous. I assume you mean f(n) = 1/2*n*(n+2) and not 1/[2*n*(n+2)] Then f(n+2) - f(n) = 1/2*(n+2)*(n+2+2) - 1/2*n*(n+2) = 1/2*(n+2)*(n+4) - 1/2*n*(n+2) = 1/2*(n+2)*{(n + 4) - n} = 1/2*(n+2)*4 = 2*(n+2)


What is the sum of the series 4 12 24 40 60 upto n terms?

The kth term, t(k) is given by t(k) = 2k2 + 2k So the sum of the first n terms is 2*(12+22+32+...+n2) + 2*(1+2+3+...+n) = 2*n(n+1)(2n+1)/6 + 2*n(n+1)/2 = n(n+1)*(2n+1)/3 + n(n+1) = n(n+1)*(2n+1+3)/3 = 2*n(n+1)(n+2)/3


What is the pattern 2 4 16 3 9 81 4 16 256 5 25 625?

n, n^2, n^2^2, n+1, (n+1)^2, (n+1)^2^2, n+2, ...