answersLogoWhite

0

The axioms are not postulates.

User Avatar

Wiki User

7y ago

What else can I help you with?

Continue Learning about Math & Arithmetic

What are the two kinds of geometry?

euclidean Geometry where the parallel line postulate exists. and the is also eliptic geometry where the parallel line postulate does not exist.


What isn't a Euclidean postulate geometry?

Non-Euclidean geometries are those that reject or modify Euclid's fifth postulate, the parallel postulate, which states that through a point not on a line, there is exactly one line parallel to the given line. Examples include hyperbolic and elliptic geometry, where multiple parallel lines can exist through a point or no parallels exist at all, respectively. These geometries explore curved spaces and differ fundamentally from classic Euclidean geometry, which is based on flat planes.


What is Euclidean geometry mean in math?

Euclidean geometry is the traditional geometry: it is the geometry of a plane surface, as developed by Euclid. Among other things, it is based on Euclid's parallel postulate which said (in effect) that given a line and a point outside that line there could only be one line through that point that was parallel to the given line. It has since been discovered that both alternatives to that postulate - that there are many such lines possible and that there are none - give rise to consistent geometries. These are non-Euclidean geometries.


What is a characteristic of Euclidean geometry?

One main characteristic of non-Euclidean geometry is hyperbolic geometry. The other is elliptic geometry. Non-Euclidean geometry is still closely related to Euclidean geometry.


What Compare and contrast the major characteristics of euclidean and non euclidean geometry?

Euclidean geometry is based on the principles outlined by Euclid, emphasizing flat spaces and relying on postulates such as the parallel postulate, which states that through a point not on a given line, exactly one parallel line can be drawn. In contrast, non-Euclidean geometry arises when this parallel postulate is altered, leading to geometries such as hyperbolic and elliptic geometry, where multiple parallels can exist or none at all. While Euclidean geometry deals with shapes and figures in two-dimensional flat planes, non-Euclidean geometry explores curved surfaces and spaces, resulting in different properties and relationships among points, lines, and angles. Overall, the key distinction lies in the treatment of parallel lines and the nature of space itself.

Related Questions

What are not a postulate of Euclidean geometry?

Answer to this: All equilateral triangles have interior angles equal to 60 degrees APEX


Does the parallel postulate in Euclidean geometry work in spherical geometry?

No.


What are the two kinds of geometry?

euclidean Geometry where the parallel line postulate exists. and the is also eliptic geometry where the parallel line postulate does not exist.


Geometry is the focus of this course?

Euclidean Geometry if the focous of this course. -apex


What are the names of Non-Euclidean Geometries?

Answer The two commonly mentioned non-Euclidean geometries are hyperbolic geometry and elliptic geometry. If one takes "non-Euclidean geometry" to mean a geometry satisfying all of Euclid's postulates but the parallel postulate, these are the two possible geometries.


What is ruler placement postulates?

The ruler placement postulate is the third postulate in a set of principles (postulates, axioms) adapted for use in high schools concerning plane geometry (Euclidean Geometry).


Is it true that the sum of three angles of any triangle is 180 in non euclidean geometry?

No. Non-Euclidean geometries usually start with the axiom that Euclid's parallel postulate is not true. This postulate can be shown to be equivalent to the statement that the internal angles of a traingle sum to 180 degrees. Thus, non-Euclidean geometries are based on the proposition that is equivalent to saying that the angles do not add up to 180 degrees.


Does a line go on forever in both directions?

In Euclidean geometry, yes.In Euclidean geometry, yes.In Euclidean geometry, yes.In Euclidean geometry, yes.


What is Euclidean geometry mean in math?

Euclidean geometry is the traditional geometry: it is the geometry of a plane surface, as developed by Euclid. Among other things, it is based on Euclid's parallel postulate which said (in effect) that given a line and a point outside that line there could only be one line through that point that was parallel to the given line. It has since been discovered that both alternatives to that postulate - that there are many such lines possible and that there are none - give rise to consistent geometries. These are non-Euclidean geometries.


Non-Euclidean geometry was discovered when in seeking cleaner alternatives to the fifth postulate it was found that the negation could also be true?

true


What is a characteristic of Euclidean geometry?

One main characteristic of non-Euclidean geometry is hyperbolic geometry. The other is elliptic geometry. Non-Euclidean geometry is still closely related to Euclidean geometry.


What is a characteristic of non-euclidean geometry?

One main characteristic of non-Euclidean geometry is hyperbolic geometry. The other is elliptic geometry. Non-Euclidean geometry is still closely related to Euclidean geometry.