There is no simple answer.
tan A, where the angle is measured in radians, is the sum of the infinite series whose nth term is
{(-1)^n*2^(2n+2)*[2^(2n+2)-1]*B(2n+2)/(2n+2)!}*A^(2n+1)
where B is a Bernoulli number.
Alternatively, a simpler definition is
sin(A) = A - A^3/3! + A^5/5! - A^7/7! + ...
cos(A) = 1 - A^2/2! + A^4/4! - A^6/6! + ...
and then tan(A) = sin(A)/cos(A).
Again, A must be in radians.
Chat with our AI personalities
It can be shown that:height = (d tan α tan β)/(tan α - tan β)where: α is the angle closest to the objectβ is the angle further away from the objectd is the distance from the point of angle α to the point of angle βThus: height = (80 ft × tan 45° × tan 34°)/(tan 45° - tan 34°) ≈ 165.78 ft
It can be shown that:height = (d tan α tan β)/(tan α - tan β)where: α is the angle closest to the objectβ is the angle further away from the objectd is the distance from the point of angle α to the point of angle βThus: height = (53 ft × tan 31.4° × tan 26.4°)/(tan 31.4° - tan 26.4°) ≈ 140.87 ft
Using trigonometry its height works out as 63 meters to the nearest meter. -------------------------------------------------------------------------------------------------------- let: h = height building α, β be the angles of elevation (29° and 37° in some order) d be the distance between the elevations (30 m). x = distance from building where the elevation of angle α is measured. Then: angle α is an exterior angle to the triangle which contains the position from which angle α is measured, the position from which angle β is measured and the point of the top of the building. Thus angle α = angle β + angle at top of building of this triangle → angle α > angle β as the angle at the top of the building is > 0 → α = 37°, β = 29° Using the tangent trigonometric ratio we can form two equations, one with angle α, one with angle β: tan α = h/x → x = h/tan α tan β = h/(x + d) → x = h/tan β - d → h/tan α = h/tan β - d → h/tan β - 1/tan α = d → h(1/tan β - 1/tan α) = d → h(tan α - tan β)/(tan α tan β) = d → h = (d tan α tan β)/(tan α - tan β) We can now substitute the values of α, β and x in and find the height: h = (30 m × tan 37° × tan 29°)/(tan 37° - tan 29°) ≈ 63 m
Sine(Sin) Cosine(Cos) Tangent(Tan) ---- -Sin of angle A=opposite leg of angle A / hypotenuse -Cos of angle A= Adjacent leg of angle A / Hypotenuse -Tan of angle A= opposite leg of angle A / Adjacent lef of angle A
tan 165/2 = 1.068691