There is no simple answer.
tan A, where the angle is measured in radians, is the sum of the infinite series whose nth term is
{(-1)^n*2^(2n+2)*[2^(2n+2)-1]*B(2n+2)/(2n+2)!}*A^(2n+1)
where B is a Bernoulli number.
Alternatively, a simpler definition is
sin(A) = A - A^3/3! + A^5/5! - A^7/7! + ...
cos(A) = 1 - A^2/2! + A^4/4! - A^6/6! + ...
and then tan(A) = sin(A)/cos(A).
Again, A must be in radians.
It can be shown that:height = (d tan α tan β)/(tan α - tan β)where: α is the angle closest to the objectβ is the angle further away from the objectd is the distance from the point of angle α to the point of angle βThus: height = (80 ft × tan 45° × tan 34°)/(tan 45° - tan 34°) ≈ 165.78 ft
It can be shown that:height = (d tan α tan β)/(tan α - tan β)where: α is the angle closest to the objectβ is the angle further away from the objectd is the distance from the point of angle α to the point of angle βThus: height = (53 ft × tan 31.4° × tan 26.4°)/(tan 31.4° - tan 26.4°) ≈ 140.87 ft
Using trigonometry its height works out as 63 meters to the nearest meter. -------------------------------------------------------------------------------------------------------- let: h = height building α, β be the angles of elevation (29° and 37° in some order) d be the distance between the elevations (30 m). x = distance from building where the elevation of angle α is measured. Then: angle α is an exterior angle to the triangle which contains the position from which angle α is measured, the position from which angle β is measured and the point of the top of the building. Thus angle α = angle β + angle at top of building of this triangle → angle α > angle β as the angle at the top of the building is > 0 → α = 37°, β = 29° Using the tangent trigonometric ratio we can form two equations, one with angle α, one with angle β: tan α = h/x → x = h/tan α tan β = h/(x + d) → x = h/tan β - d → h/tan α = h/tan β - d → h/tan β - 1/tan α = d → h(1/tan β - 1/tan α) = d → h(tan α - tan β)/(tan α tan β) = d → h = (d tan α tan β)/(tan α - tan β) We can now substitute the values of α, β and x in and find the height: h = (30 m × tan 37° × tan 29°)/(tan 37° - tan 29°) ≈ 63 m
Sine(Sin) Cosine(Cos) Tangent(Tan) ---- -Sin of angle A=opposite leg of angle A / hypotenuse -Cos of angle A= Adjacent leg of angle A / Hypotenuse -Tan of angle A= opposite leg of angle A / Adjacent lef of angle A
It is a meaningless expression. Tan is a function which requires an angle as its argument.
It can be shown that:height = (d tan α tan β)/(tan α - tan β)where: α is the angle closest to the objectβ is the angle further away from the objectd is the distance from the point of angle α to the point of angle βThus: height = (80 ft × tan 45° × tan 34°)/(tan 45° - tan 34°) ≈ 165.78 ft
It can be shown that:height = (d tan α tan β)/(tan α - tan β)where: α is the angle closest to the objectβ is the angle further away from the objectd is the distance from the point of angle α to the point of angle βThus: height = (53 ft × tan 31.4° × tan 26.4°)/(tan 31.4° - tan 26.4°) ≈ 140.87 ft
It can be shown that:height = (d tan α tan β)/(tan α - tan β)where: α is the angle closest to the objectβ is the angle further away from the objectd is the distance from the point of angle α to the point of angle βThus: height = (40 ft × tan 50° × tan 30°)/(tan 50° - tan 30°) ≈ 44.80 ft
Using trigonometry its height works out as 63 meters to the nearest meter. -------------------------------------------------------------------------------------------------------- let: h = height building α, β be the angles of elevation (29° and 37° in some order) d be the distance between the elevations (30 m). x = distance from building where the elevation of angle α is measured. Then: angle α is an exterior angle to the triangle which contains the position from which angle α is measured, the position from which angle β is measured and the point of the top of the building. Thus angle α = angle β + angle at top of building of this triangle → angle α > angle β as the angle at the top of the building is > 0 → α = 37°, β = 29° Using the tangent trigonometric ratio we can form two equations, one with angle α, one with angle β: tan α = h/x → x = h/tan α tan β = h/(x + d) → x = h/tan β - d → h/tan α = h/tan β - d → h/tan β - 1/tan α = d → h(1/tan β - 1/tan α) = d → h(tan α - tan β)/(tan α tan β) = d → h = (d tan α tan β)/(tan α - tan β) We can now substitute the values of α, β and x in and find the height: h = (30 m × tan 37° × tan 29°)/(tan 37° - tan 29°) ≈ 63 m
50.9
Sine(Sin) Cosine(Cos) Tangent(Tan) ---- -Sin of angle A=opposite leg of angle A / hypotenuse -Cos of angle A= Adjacent leg of angle A / Hypotenuse -Tan of angle A= opposite leg of angle A / Adjacent lef of angle A
Angle A=opposite/adjacent shift tan Angle B=90-Angle A
The angle is the arc-tan of the gradient of the line. That is to say, the tangent of that angle is the gradient of the line or the angle between the straight line and the positive x-axis. Arc tan may also be written as tan-1 but that is frequently confused with 1/tan or the cotangent function.
It is a meaningless expression. Tan is a function which requires an angle as its argument.
- tan 60
tan 165/2 = 1.068691
The abbreviation is "tan".