In the limit, a chord approaches a tangent, but is never actually a tangent. (In much the same way as 1/x approaches 0 as x increases, but is never actually 0.)In the limit, a chord approaches a tangent, but is never actually a tangent. (In much the same way as 1/x approaches 0 as x increases, but is never actually 0.)In the limit, a chord approaches a tangent, but is never actually a tangent. (In much the same way as 1/x approaches 0 as x increases, but is never actually 0.)In the limit, a chord approaches a tangent, but is never actually a tangent. (In much the same way as 1/x approaches 0 as x increases, but is never actually 0.)
Tangent = sine/cosine provided that cosine is non-zero. When cosine is 0, then tangent is undefined.
0 is your answer tan(45)=1 and arccos(1)=0
The tangent function is a periodic function with period 180 degrees sotan(360) = tan(360-2*180) = tan(0) = 0.
Circle passing through coordinate: (0, 0) Circle equation: x^2 +6 +y^2 -10 = 0 Completing the squares: (x+3)^2 +(y-5)^2 = 34 Centre of circle: (-3, 5) Slope of radius: -5/3 Slope of tangent: 3/5 Tangent equation: y-0 = 3/5(x-0) => y = 3/5x
In the limit, a chord approaches a tangent, but is never actually a tangent. (In much the same way as 1/x approaches 0 as x increases, but is never actually 0.)In the limit, a chord approaches a tangent, but is never actually a tangent. (In much the same way as 1/x approaches 0 as x increases, but is never actually 0.)In the limit, a chord approaches a tangent, but is never actually a tangent. (In much the same way as 1/x approaches 0 as x increases, but is never actually 0.)In the limit, a chord approaches a tangent, but is never actually a tangent. (In much the same way as 1/x approaches 0 as x increases, but is never actually 0.)
Tangent = sine/cosine provided that cosine is non-zero. When cosine is 0, then tangent is undefined.
0 is your answer tan(45)=1 and arccos(1)=0
The tangent function is a periodic function with period 180 degrees sotan(360) = tan(360-2*180) = tan(0) = 0.
Circle passing through coordinate: (0, 0) Circle equation: x^2 +6 +y^2 -10 = 0 Completing the squares: (x+3)^2 +(y-5)^2 = 34 Centre of circle: (-3, 5) Slope of radius: -5/3 Slope of tangent: 3/5 Tangent equation: y-0 = 3/5(x-0) => y = 3/5x
Circle equation: x^2 +y^2 -8x -16y -209 = 0 Completing the squares: (x-4)^2 +(y-8)^2 = 289 Centre of circle: (4, 8) Radius of circle 17 Slope of radius: 0 Perpendicular tangent slope: 0 Tangent point of contact: (21, 8) Tangent equation: x = 21 passing through (21, 0)
tan (0) = opposite/adjacent
sin(x) = tan(x) when x equal 0
Equation of circle: x^2 +y^2 -6x +4y +5 = 0 Completing the squares (x -3)^2 +(y +2)^2 = 8 Centre of circle: (3, -2) Radius of circle: square root of 8 Points of contact are at: (1, 0) and (5, 0) where the radii touches the x axis Slope of 1st tangent line: 1 Slope of 2nd tangent line: -1 Equation of 1st tangent: y -0 = 1(x -1) => y = x -1 Equation of 2nd tangent: y -0 = -1(x -5) => y = -x +5
Because it tends to infinity. Additionally, tangent can be expressed as sin theta divided by cos theta. The sine of 90 is 1. The cosine of 90 is 0. That would be 1 divided by 0, or division by zero; which is undefined.
Equation of circle: x^2 +y^2 -6x +4y +5 = 0 Completing the squares: (x-3)^2 +(y+2)^2 = 8 Radius of circle: square root of 8 Center of circle: (3, -2) Circle makes contact with the x axis at: (1, 0) and (5, 0) Slope of 1st tangent: 1 Slope of 2nd tangent: -1 1st tangent line equation: y = 1(x-1) => y = x-1 2nd tangent line equation: y = -1(x-5) => y = -x+5
It's not. The tangent of 180 degrees is zero. Consider tan(x) = sin(x)/cos(x). When x = 180 degrees, sin(x) = 0 and cos(x) = -1 and so tan(x) = 0