the answer for the above question is -2187
work it out it's one more than the 8th and one less than the 10th * * * * * The above answer seems to make no sense here. It is not clear what you mean by a fraction sequence. It is not possible to go through the process for finding the nth term in an arithmetic, geometric or power sequence here. For school mathematics, sequences of fractions are, in fact composed of two simple sequences. One sequence defines the numerators and the other defines the denominators. In such cases, the nth term of the fraction sequence is the fraction given by the nth term of the numerator sequence divided by the nth term of the denominator sequence. For example: 1/1, 3/4, 5/9, 7/16, 9/25, ... The numerators are the odd number, with t(n) = 2n-1 The denominators are the squares of natural numbers with u(n) = n2 So, the nth term of the fraction sequence is (2n-1)/n2.
23
If you have this series: 1,2,3,4,5,6,7,8The 8th term is 8 and the n-th term is n.But if you have this series: 2,4,6,8,10,12,14,16The 8th term is 16 and the n-th term is 2n
77
Tn = a*r(n-1) r = 3 T8 = 8748 = a*37 So a = 8748/37 = 4 = T1
The given sequence is the sequence of perfect squares starting from 1. The nth term of this sequence can be represented as n^2. Therefore, the 8th term would be 8^2, which equals 64. So, the 8th term of the sequence 1, 4, 9, 16, 25 is 64.
90
48
To find the 8th term of the sequence with the rule 3n + 4, you would substitute n = 8 into the formula. This gives you 3(8) + 4 = 24 + 4 = 28. Therefore, the 8th term of the sequence is 28.
the answer for the above question is -2187
90
What is the value of the 8th term of the sequence 4, 8, 16, 32,?what is the answers?1,024,512,128or2,048.
It is: 1 1 2 3 5 8 13 and 21 which is the 8th term
The eighth term of the series 4, 8,16,32 is 512. Each term is twice the previous term.
work it out it's one more than the 8th and one less than the 10th * * * * * The above answer seems to make no sense here. It is not clear what you mean by a fraction sequence. It is not possible to go through the process for finding the nth term in an arithmetic, geometric or power sequence here. For school mathematics, sequences of fractions are, in fact composed of two simple sequences. One sequence defines the numerators and the other defines the denominators. In such cases, the nth term of the fraction sequence is the fraction given by the nth term of the numerator sequence divided by the nth term of the denominator sequence. For example: 1/1, 3/4, 5/9, 7/16, 9/25, ... The numerators are the odd number, with t(n) = 2n-1 The denominators are the squares of natural numbers with u(n) = n2 So, the nth term of the fraction sequence is (2n-1)/n2.
23