To simplify the expression (43 + 7w - 15 - 5w), first combine like terms. The constants (43 - 15) equal (28), and the terms with (w) combine as (7w - 5w) to give (2w). Thus, the simplified expression is (28 + 2w).
To simplify the expression (43 + 7w - 15 - 5w), first combine like terms. Start by combining the constant terms: (43 - 15) which equals (28). Next, combine the (w) terms: (7w - 5w) which equals (2w). Therefore, the simplified expression is (28 + 2w).
-5w + 9
To solve the expression (-6(9 + 5w) - 7w), first distribute (-6) across the terms inside the parentheses: (-6 \times 9 = -54) and (-6 \times 5w = -30w). This gives us (-54 - 30w - 7w). Combining like terms results in (-54 - 37w). Thus, the final answer is (-54 - 37w).
25y2 - 49w2 = (5y)2 - (7w)2 = (5y - 7w)(5y + 7w)
56w2 + 17w - 3 = 56w2 + 24w - 7w - 3 = 8w(7w + 3) - 1(7w + 3) = (7w + 3)(8w - 1)
To simplify the expression (43 + 7w - 15 - 5w), first combine like terms. Start by combining the constant terms: (43 - 15) which equals (28). Next, combine the (w) terms: (7w - 5w) which equals (2w). Therefore, the simplified expression is (28 + 2w).
(5y + 7w)(5y - 7w)
-54 - 37w
-5w + 9
To solve the expression (-6(9 + 5w) - 7w), first distribute (-6) across the terms inside the parentheses: (-6 \times 9 = -54) and (-6 \times 5w = -30w). This gives us (-54 - 30w - 7w). Combining like terms results in (-54 - 37w). Thus, the final answer is (-54 - 37w).
-63=7w
16
25y2 - 49w2 = (5y)2 - (7w)2 = (5y - 7w)(5y + 7w)
56w2 + 17w - 3 = 56w2 + 24w - 7w - 3 = 8w(7w + 3) - 1(7w + 3) = (7w + 3)(8w - 1)
127w = 847w/7 = 84/7w = 12
7W + 4 - 3W = 15gather the w's together4W + 4 = 15subtract 4 from each side4W = 11divide each sides integers by 4W = 11/4================checks
15/43 is simplified.