Frequency = (speed) / (wavelength) = 900/9 = 100 Hz.
Freq = Speed/Wavelength = 37.5/25 Hz = 1.5 Hz
frequency [Hz] = velocity[m/s] / wavelength [m] frequency [Hz] = 24 [m/s] / 3 [m] frequency = 8 [Hz]
simple use v=fλ wherev is velocity (m/s)f is frequency (o/s)λ is the wavelength (m)so therefore v = 328 m/s
Wavelength = (speed) divided by (frequency) = 10/0.5 = 20
The wavelength of a sound wave in air can be calculated using the formula: wavelength = speed of sound / frequency. For a 440 Hz tone in air at room temperature, the speed of sound is approximately 343 meters per second. Therefore, the wavelength of a 440 Hz tone in air is approximately 0.78 meters.
The wavelength of a 680 Hz tone moving through air can be calculated using the formula: wavelength = speed of sound / frequency. The speed of sound in air at room temperature is approximately 343 m/s. Therefore, the wavelength of a 680 Hz tone in air would be about 0.504 meters (504 mm).
What is the wave length of 100 Hz? Answer You mean a sound wave in air. At a temperature of 20 degrees Celsius or 68 degrees Fahrenheit there is the speed of sound c = 343 meters per second. For a tone of f = 100 Hz the wavelength is lambda = c / f = 343 / 100 = 3.43 meters.The equation for the relationship between wavelength and frequency is X = frequency * wavelength, where X = the speed of the particle. For light, the wavelength of 100 Hz is 2.99 E8 cm, and for sound, the wavelength is 60 m.
The speed of a wave is calculated by multiplying its wavelength by its frequency. Therefore, the speed of the wave with a 0.2 Hz wavelength and 100 meters frequency would be 20 meters per second (0.2 Hz * 100 meters = 20 m/s).
To find the speed of the wave, you can use the formula: speed = frequency x wavelength. Given the frequency is 0.2 Hz and wavelength is 100 meters, you can calculate the speed of the wave as 0.2 Hz x 100 meters = 20 meters per second.
The wavelength of a 340 Hz tone in air is approximately 1 meter. This can be calculated using the formula: wavelength = speed of sound / frequency. In air at room temperature, the speed of sound is roughly 343 meters per second.
The frequency of a wave is calculated by dividing the velocity by the wavelength. In this case, the frequency would be 5 Hz (100 m/s / 20 m = 5 Hz).
The wavelength of a wave can be calculated using the formula: wavelength = speed of wave / frequency. In this case, the wavelength would be 0.5 meters, as 50 m/s divided by 100 Hz equals 0.5 meters.
What is the wave length of 100 Hz? Answer You mean a sound wave in air. At a temperature of 20 degrees Celsius or 68 degrees Fahrenheit there is the speed of sound c = 343 meters per second. For a tone of f = 100 Hz the wavelength is lambda = c / f = 343 / 100 = 3.43 meters.The equation for the relationship between wavelength and frequency is X = frequency * wavelength, where X = the speed of the particle. For light, the wavelength of 100 Hz is 2.99 E8 cm, and for sound, the wavelength is 60 m.
velocity = frequency × wavelength frequency = velocity / wavelength f= 100 /20 f= 5 Hz
o.o1 nanometers < wavelength <0.06 nanometers, which corresponds to energies of 20 to 100 keV
The wavelength corresponding to a frequency of 100 Hz can be calculated using the equation: wavelength = speed of light / frequency. For light in a vacuum, with a speed of approximately 3 x 10^8 m/s, the wavelength would be around 3 x 10^6 m or 3 million meters.