Want this question answered?

Q: What is the binary code for 01001011 00000011 01011000 00101100 00000111 00001101?

Write your answer...

Submit

Still have questions?

Continue Learning about Math & Arithmetic

Related questions

That IS the binary code.

translates to "KiLLeRz is crazy as"

ASCII symbol 'K' has the binary code 01001011. Reading right-to-left, each bit has the following value: bit 0 = 1 = 2^0 * 1 = 1 * 1 = 1 bit 1 = 1 = 2^1 * 1 = 2 * 1 = 2 bit 2 = 0 = 2^2 * 0 = 4 * 0 = 0 bit 3 = 1 = 2^4 * 1 = 8 * 1 = 8 bit 4 = 0 = 2^8 * 0 = 16 * 0 = 0 bit 5 = 0 = 2^16 * 0 = 32 * 0 = 0 bit 6 = 1 = 2^32 * 1 = 64 * 1 = 64 bit 7 = 0 = 2^64 * 0 = 128 * 0 = 0 1 + 2 + 0 + 8 + 0 + 0 + 64 + 0 = 75 Therefore 01001011 is the binary encoding for the decimal value 75. Thus ASCII symbol 'K' has the decimal value 75 Working the other way, we divide the decimal value by 2. The remainder can only be 0 or 1 and we write this remainder down. We continue dividing by 2, writing a 0 or a 1, until the decimal value is 0. We then pad any remaining bits with 0s. Like so: 75 / 2 = 37 r 1 37 / 2 = 18 r 1 18 / 2 = 9 r 0 9 / 2 = 4 r 1 4 / 2 = 2 r 0 2 / 2 = 1 r 0 1 / 2 = 0 r 1 Reading from the bottom up, the remainders are 1001011, which we pad with a leading zero to create the binary value 01001011. Note that we typically use leading zeroes when the number of bits is not an exact multiple of 8, thus creating a binary value of one or more 8-bit bytes. Another way to do the conversion is to use hexadecimal notation. Hexadecimal makes it much easier for humans to interpret binary values because there are 16 digits (0-9 then A-F) and each digit represents a unique 4-bit binary pattern: 0x0 = 0000 0x1 = 0001 0x2 = 0010 0x3 = 0011 0x4 = 0100 0x5 = 0101 0x6 = 0110 0x7 = 0111 0x8 = 1000 0x9 = 1001 0xA = 1010 0xB = 1011 0xC = 1100 0xD = 1101 0xE = 1110 0xF = 1111 From this we can see that 01001011 is formed from 4-bit patterns 0100 and 1011, which from the table above equates to 0x4 and 0xB respectively. Thus binary 01001011 is equivalent to 0x4B in hexadecimal. 0xB has the decimal value 11 while 0x4 has the decimal value 4. However, as with decimal, the position of the digit is significant. Instead of increasing powers of 10 we are dealing with increasing powers of 16, thus 0x4B really means 11 x 16^0 + 4 x 16^1, which reduces to 11 x 1 + 4 x 16 or simply 11 + 64 = 75. Working the other way, we divide the decimal value by 16 and use the remainder to determine the hex digit: 75 / 16 = 4 r 11 4 / 16 = 0 r 4 11 in hexadecimal is B, thus 75 in hexadecimal is 0x4B. From the table above, we see that 0x4 is 0100 and 0xB is 1011, thus 75 = 0x4B = 01001011. From this we can see that converting decimal to any base is simply a matter of repeatedly dividing by the base and taking the remainder. If the base is greater than 10, we convert that remainder to its corresponding digit. Converting the other way (to decimal) we need to know the positional value of each significant digit and that is always an increasing power of the base, starting from 0 in the least-significant position.

Upper case A 01000001 B 01000010 C 01000011 D 01000100 E 01000101 F 01000110 G 01000111 H 01001000 I 01001001 J 01001010 K 01001011 L 01001100 M 01001101 N 01001110 O 01001111 P 01010000 Q 01010001 R 01010010 S 01010011 T 01010100 U 01010101 V 01010110 W 01010111 X 01011000 Y 01011001 Z 01011010 Lower Case a 01100001 b 01100010 c 01100011 d 01100100 e 01100101 f 01100110 g 01100111 h 01101000 i 01101001 j 01101010 k 01101011 l 01101100 m 01101101 n 01101110 o 01101111 p 01110000 q 01110001 r 01110010 s 01110011 t 01110100 u 01110101 v 01110110 w 01110111 x 01111000 y 01111001 z 01111010

CapitalsLowercase Letter Binary Code A 01000001 B 01000010 C 01000011 D 01000100 E 01000101 F 01000110 G 01000111 H 01001000 I 01001001 J 01001010 K 01001011 L 01001100 M 01001101 N 01001110 O 01001111 P 01010000 Q 01010001 R 01010010 S 01010011 T 01010100 U 01010101 V 01010110 W 01010111 X 01011000 Y 01011001 Z 01011010 Letter Binary Code a 01100001 b 01100010 c 01100011 d 01100100 e 01100101 f 01100110 g 01100111 h 01101000 i 01101001 j 01101010 k 01101011 l 01101100 m 01101101 n 01101110 o 01101111 p 01110000 q 01110001 r 01110010 s 01110011 t 01110100 u 01110101 v 01110110 w 01110111 x 01111000 y 01111001 z 01111010

I'm not really sure what you are asking but these are all the steps you can follow, this way you can see what you did or didn't do: 1. Place the printing plate on the left of the machine. The printing plate that went in first is the 01011001 . 2. Place the color that corresponds to that printing plate.Use these colors and printing plates in this order: 01011001 Y for Yellow 01000011 C for Cyan 01001101 M for Magenta 01001011 K for Black 3. Place a paper over the inked plate. 4. Turn the wheel to press the inked paper. 5. Take the inked paper and place it on the dryer at right. Do not turn the dryer on. This is just to have a place to hold that paper. 6. Place the next plate on the left. 7. Place ink for that particular plate. 8. Take the inked paper that you previously did with the first plate and lay it over the new inked plate. 9. Turn the wheel to press that new color on to the paper. 10. Take the inked paper and place it on the dryer without turning it on. 11. Do the above for the next two plates with their corresponding colors. 12 After pressing the 4 plates with 4 different colors, place it on the dryer. Turn on the dryer.

170/2 = 85 R 0. Therefore binary number so far is 0.85/2 = 42 R 1. Therefore binary number so far is 10.42/2 = 21 R 0. Therefore binary number so far is 010.21/2 = 10 R 1. Therefore binary number so far is 1010.10/2 = 5 R 0. Therefore binary number so far is 01010.5/2 = 2 R 1. Therefore binary number so far is 101010.2/2 = 1 R 0. Therefore binary number so far is 0101010.1/2 = 0 R 1. Therefore binary number so far is 10101010.The integer portion of last division was 0 so for the decimal number 170, the binary equivalent is 10101010.

Ill teach you right now, only binary math tho, not the programming langue or anything, just that math.... first use this table 1 2 4 8 now the number 1 is like saying "yes" and 0 is like saying "No" to make the number 5 you do 1 plus 4 = 5 so we do do we use 4 yes do we use 2 no do we use 1 yes so its 101 first one is 4 then 0 is 2 meaning we don't count that and then 1 again witch is 1 so we add em, 5 so 101 = 5 how to make letters? here is a graph you can use I forgot to say, that the 1 2 4 8 keeps going just get the last number and add it with itself like 1 2 4 8 16 32 64 128 and so on chr(32) 00100000 ! chr(33) 00100001 " chr(34) 00100010 # chr(35) 00100011 $ chr(36) 00100100 % chr(37) 00100101 & chr(38) 00100110 ' chr(39) 00100111 ( chr(40) 00101000 ) chr(41) 00101001 * chr(42) 00101010 + chr(43) 00101011 , chr(44) 00101100 - chr(45) 00101101 . chr(46) 00101110 / chr(47) 00101111 0 chr(48) 00110000 1 chr(49) 00110001 2 chr(50) 00110010 3 chr(51) 00110011 4 chr(52) 00110100 5 chr(53) 00110101 6 chr(54) 00110110 7 chr(55) 00110111 8 chr(56) 00111000 9 chr(57) 00111001 : chr(58) 00111010 ; chr(59) 00111011 < chr(60) 00111100 = chr(61) 00111101 > chr(62) 00111110 ? chr(63) 00111111 @ chr(64) 01000000 A chr(65) 01000001 B chr(66) 01000010 C chr(67) 01000011 D chr(68) 01000100 E chr(69) 01000101 F chr(70) 01000110 G chr(71) 01000111 H chr(72) 01001000 I chr(73) 01001001 J chr(74) 01001010 K chr(75) 01001011 L chr(76) 01001100 M chr(77) 01001101 N chr(78) 01001110 O chr(79) 01001111 P chr(80) 01010000 Q chr(81) 01010001 R chr(82) 01010010 S chr(83) 01010011 T chr(84) 01010100 U chr(85) 01010101 V chr(86) 01010110 W chr(87) 01010111 X chr(88) 01011000 Y chr(89) 01011001 Z chr(90) 01011010 [ chr(91) 01011011 \ chr(92) 01011100 ] chr(93) 01011101 ^ chr(94) 01011110 _ chr(95) 01011111 ` chr(96) 01100000 a chr(97) 01100001 b chr(98) 01100010 c chr(99) 01100011 d chr(100) 01100100 e chr(101) 01100101 f chr(102) 01100110 g chr(103) 01100111 h chr(104) 01101000 i chr(105) 01101001 j chr(106) 01101010 k chr(107) 01101011 l chr(108) 01101100 m chr(109) 01101101 n chr(110) 01101110 o chr(111) 01101111 p chr(112) 01110000 q chr(113) 01110001 r chr(114) 01110010 s chr(115) 01110011 t chr(116) 01110100 u chr(117) 01110101 v chr(118) 01110110 w chr(119) 01110111 x chr(120) 01111000 y chr(121) 01111001 z chr(122) 01111010 { chr(123) 01111011 | chr(124) 01111100 } chr(125) 01111101 ~ chr(126) 01111110 n/a chr(127) 01111111