f(t) = a + b*c-t, where a, b c are constants and t is a non-negative variable, is the general form of a function describing exponential decay. t is usually a variable related to time.The value of the function starts off f(0) = a + b and decreases (decays) towards f(t) = a.
In some cases, such as radio active decay or a population extinction, a is zero so the amount of radioactive material left or surviving individuals decreases to zero.
Chat with our AI personalities
Exponential growth is when the amount of something is increasing, and exponential decay is when the amount of something is decreasing.
They are incredibly different acceleration patterns. Exponential growth is unbounded, whereas exponential decay is bounded so as to form a "dynamic equilibrium." This is why exponential decay is so typical of natural processes. To see work I have done in explaining exponential decay, go to the page included in the related links.
Exponential growth goes infinitely up. Exponential decay goes infinitely over always getting closer to the x axis but never reaching it. ADDED: An exponential decay trace's flat-looking region has its own special name: an "asymptote".
5x = 11 Perhaps an algebra II exponential problem.
It can be growth or decay - it depends on whether n is positive (growth) or negative (decay).