answersLogoWhite

0

In Mathematics, a set is a collection of distinct entities regarded as a unit, being either individually specified or (more usually) satisfying specified conditions. An element is an entity that is a single member of a set.

User Avatar

Wiki User

11y ago

Still curious? Ask our experts.

Chat with our AI personalities

DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin
RossRoss
Every question is just a happy little opportunity.
Chat with Ross
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake

Add your answer:

Earn +20 pts
Q: What is the definition of set and element?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the definition for additive identity property of 0?

0 is the identity element of a set such that 0 + x = x = x + 0 for all elements x in the set.


Definition of compact set?

A set S of real numbers is called compact if every sequence in S has a subsequence that converges to an element again contained in S.


Is empty set super set?

No, an empty set can't be the super set.The definition of super set is as follows:If A and B are sets, and every element of A is also an element of B, then B is the super set of A, denoted by B ⊇ A.Another way to interpret this is A ⊆ B, which means that "A is the subset of B".Suppose that ∅ is the super set. This implies:∅ ⊇ A [Which is not true! Contradiction!]Remember that ∅ and {∅} are two different sets. If we have {∅}, then there exists an element that belongs to that set since ∅ is contained in that set. On the other hand, ∅ doesn't have any element, including ∅.Therefore, an empty set can't be the super set.


What is the definition for zero identity property?

The zero identity is defined in the context of a binary operation defined by addition over a set. It states that there is an element in the set, denoted by 0, such that for every element, X, in the set, 0 + X = X = X + 0. Addition in the set need not be commutative, but addition of 0 must be.


What is the definition for identity properties for addition and multiplication?

The identity property for addition is that there exists an element of the set, usually denoted by 0, such that for any element, X, in the set, X + 0 = X = 0 + X Similarly, the multiplicative identity, denoted by 1, is an element such that for any member, Y, of the set, Y * 1 = Y = 1 * Y