1/xlnx Use the chain rule: ln(ln(x)) The derivative of the outside is1/ln(x) times the derivative of the inside. 1/[x*ln(x)]
The order of operations is not quite clear here.If you mean (ln 2) + x, the derivate is 0 + 1 = 1.If you mean ln(2+x), by the chain rule, you get (1/x) times (0+1) = 1/x.
There are several steps involved in how one can solve the derivative x plus y - 1 equals x2 plus y2. The final answer to this math problem is y'(x) = (1-2 x)/(2 y-1).
The anti-derivative of 1/x is ln|x| + C, where ln refers to logarithm of x to the base e and |x| refers to the absolute value of x, and C is a constant.
Oh, dude, the third derivative of ln(x) is -2/(x^3). But like, who really needs to know that, right? I mean, unless you're planning on impressing your calculus teacher or something. Just remember, math is like a puzzle, except no one actually wants to put it together.
the derivative of ln x = x'/x; the derivative of 1 is 0 so the answer is 500(1/x)+0 = 500/x
1/xlnx Use the chain rule: ln(ln(x)) The derivative of the outside is1/ln(x) times the derivative of the inside. 1/[x*ln(x)]
The derivative of ln(10) is 1/10. This is because the derivative of the natural logarithm function ln(x) is 1/x. Therefore, when differentiating ln(10), the derivative is 1/10.
y = e^ln x using the fact that e to the ln x is just x, and the derivative of x is 1: y = x y' = 1
The derivative of ln x is 1/x The derivative of 2ln x is 2(1/x) = 2/x
-1/ln(1-x) * 1/(1-X) or -1/((1-x)*ln(1-x))
The order of operations is not quite clear here.If you mean (ln 2) + x, the derivate is 0 + 1 = 1.If you mean ln(2+x), by the chain rule, you get (1/x) times (0+1) = 1/x.
In this case, you need to apply the chain rule. Note that the derivative of ln N = 1/N. In that case we get: f(x) = ln(1 - x) ∴ f'(x) = 1/(1 - x) × -1 ∴ f'(x) = -1/(1 - x)
The derivative of ln x is 1/x. Replacing the expression, that gives you 1 / (1-x). By the chain rule, this must then be multiplied by the derivative of (1-x), which is -1. So, the final result is -1 / (1-x).
There are several steps involved in how one can solve the derivative x plus y - 1 equals x2 plus y2. The final answer to this math problem is y'(x) = (1-2 x)/(2 y-1).
The derivative of ln(x) is 1/x. Therefore, by Chain Rule, we get:[ln(10x)]' = 1/10x * 10 = 1/xUsing this method, you can also infer that the derivative of ln(Ax) where A is any constant equals 1/x.
x (ln x + 1) + Constant