The derivative of a linear function is always its gradient
In the function y = x-1, the gradient is 1 as 1 is the co-efficient of 1x.
Chat with our AI personalities
x*x1/2= x3/2 Derivative = 3/2 * x1/2
If you mean:f(x) = x1 + root(2)The derivative of x1, or x, is simply 1. The derivative of the square root of 2, just like the derivative of any constant, is zero. Therefore, the derivative of the entire function is one.If you mean:f(x) = x1 + root(2)you shuld use the power rule (the exponent, multiplied by x to the power (exponent minus 1)):(1 + root(2)) xroot(2)If you mean:f(x) = x1 + root(2)The derivative of x1, or x, is simply 1. The derivative of the square root of 2, just like the derivative of any constant, is zero. Therefore, the derivative of the entire function is one.If you mean:f(x) = x1 + root(2)you shuld use the power rule (the exponent, multiplied by x to the power (exponent minus 1)):(1 + root(2)) xroot(2)If you mean:f(x) = x1 + root(2)The derivative of x1, or x, is simply 1. The derivative of the square root of 2, just like the derivative of any constant, is zero. Therefore, the derivative of the entire function is one.If you mean:f(x) = x1 + root(2)you shuld use the power rule (the exponent, multiplied by x to the power (exponent minus 1)):(1 + root(2)) xroot(2)If you mean:f(x) = x1 + root(2)The derivative of x1, or x, is simply 1. The derivative of the square root of 2, just like the derivative of any constant, is zero. Therefore, the derivative of the entire function is one.If you mean:f(x) = x1 + root(2)you shuld use the power rule (the exponent, multiplied by x to the power (exponent minus 1)):(1 + root(2)) xroot(2)
total differentiation is closer to implicit differentiation although you are not solving for dy/dx. in other words: the total derivative of f(x1,x2,...,xk) with respect to xn= [df(x1,x2,...,xk)/dx1][dx1/dxn] + df(x1,x2,...,xk)/dx2[dx2/dxn]+...+df(x1,x2,...,xk)/dxn +[df(x1,x2,...,xk)/dxn+1][dxn+1/dxn]+...+[df(x1,x2,...,xk)/dxk][dxk/dxn] however, the partial derivative is not this way. the partial derivative of f(x1,x2,...,xk) with respect to xn is just that, can't be expanded. The chain rule is not the same as total differentiation either. The chain rule is for partially differentiating f(x1,x2,...,xk) with respect to a variable not included in the explicit form. In other words, xn has to be considered a function of this variable for all integers n. so the total derivative is similar to the chain rule, but not the same.
The derivative of ( x1/2 ) with respect to 'x' is [ 1/2 x-1/2 ], or 1/[2sqrt(x)] .
The derivative of a function is another function that represents the slope of the first function, slope being the limit of delta y over delta x at any two points x1,y1 and x2,y2 on the graph of the function as delta x approaches zero.