18
Take the natural logarithm (ln) of both sides of the equation to cancel the exponent (e). For example, ify=Aexlog transform both sides and apply the rules of logarithms:ln(y)=ln(Aex)ln(y)=ln(A)+ln(ex)ln(y)=ln(A)+xrearrange in terms of x:x=ln(y)-ln(A), or more simplyx=ln(y/A)
2 ln(9) + 2 ln(5) = 2 ln(x) - 3ln(81) + ln(25) = ln(x2) - 37.61332 = ln(x2) - 3ln(x2) = 10.61332ln(x) = 5.30666x = e5.30666 = 201.676 (rounded)
I assume the question is NOT about ln(a*b) = ln(a) + ln(b) because that is true for all positive real a and b. Instead, you want a solution to ln(a) * b = ln(a) + ln(b) or, ln(a) * (b-1) = ln(b) ln(a) = ln(b)/(b-1) ln(a) = ln[b1/(b-1)] Exponentiating, a = b1/(b-1) For any real number b > 1, a given by the above equation will meet your requirements.
Conform
Deviate is a verb.
Where f(x) = lambda* exp(-lambda*x), Inverse cumulative distribution= -ln(1-p)/lambda. See http://en.wikipedia.org/wiki/Exponential_distribution Note that if used in random number generation, with "x" equal to the random deviate, then given U ~ uniform(0,1), then x = -ln(U)/lambda.
Ln 4 + 3Ln x = 5Ln 2 Ln 4 + Ln x3= Ln 25 = Ln 32 Ln x3= Ln 32 - Ln 4 = Ln (32/4) = Ln 8= Ln 2
I refuse to deviate from the path I have chosen.
18
ln(ln)
deviate comes from the Latin deviare...deviat
Take the natural logarithm (ln) of both sides of the equation to cancel the exponent (e). For example, ify=Aexlog transform both sides and apply the rules of logarithms:ln(y)=ln(Aex)ln(y)=ln(A)+ln(ex)ln(y)=ln(A)+xrearrange in terms of x:x=ln(y)-ln(A), or more simplyx=ln(y/A)
Use the product rule.y = x lnxy' = x (ln x)' + x' (ln x) = x (1/x) + 1 ln x = 1 + ln xUse the product rule.y = x lnxy' = x (ln x)' + x' (ln x) = x (1/x) + 1 ln x = 1 + ln xUse the product rule.y = x lnxy' = x (ln x)' + x' (ln x) = x (1/x) + 1 ln x = 1 + ln xUse the product rule.y = x lnxy' = x (ln x)' + x' (ln x) = x (1/x) + 1 ln x = 1 + ln x
You can also write this as ln(6 times 4)
2 ln(9) + 2 ln(5) = 2 ln(x) - 3ln(81) + ln(25) = ln(x2) - 37.61332 = ln(x2) - 3ln(x2) = 10.61332ln(x) = 5.30666x = e5.30666 = 201.676 (rounded)
Deviate - Kill II This album - was created in 1998.