Perhaps a good way to explain the difference between exponential and nonexponential decay (like perhaps linear decay) would be to use some examples. In radioactive decay, which is exponential decay, the rate of decay is a function of the amount of material present. The more you have to start with, the more decays per unit of time. The less you begin with the smaller that number of decay events in a given period. And as the decay continues the number of decay events per unit of time decreases. (A consequence is that the material might never be seen to all "go away" in time.) Radioactive decay is a function of the amount of material undergoing decay, and the rate of decay is exponential. That is, when we write the equations for the phenomenon, we'll be using exponents in the expressions to account for the dependence of the decay rate on the amount of material present. There is a good comparison to this. Let's say a group of students is in a classroom and leaves at the bell. The all get up and hit the door, but the rate at which the students can get out is basically a function of the width of the doorway, and not how many students are trying to get out. This is easy to see. If the students go through the door at one student per second and 30 students were in the class, it will take 30 seconds for them to all leave. The rate of "decay" of the population in the room is constant at one student per second. It does not change. It was the same when all the students were trying to get out, and remains constant even as the last couple of students are trying to exit. It is a nonexponential "decay" scheme, and is, in fact, a linear one. The equation expressing the egress phenomenon will not have any exponents in it; all the terms will be what are called first order terms. No "powers" of a number or variable will appear. (A consequence is that the room will empty of students, and definitely so. This is a contrast to radioactive decay.)
Exponential growth is when the amount of something is increasing, and exponential decay is when the amount of something is decreasing.
They are incredibly different acceleration patterns. Exponential growth is unbounded, whereas exponential decay is bounded so as to form a "dynamic equilibrium." This is why exponential decay is so typical of natural processes. To see work I have done in explaining exponential decay, go to the page included in the related links.
Exponential growth goes infinitely up. Exponential decay goes infinitely over always getting closer to the x axis but never reaching it. ADDED: An exponential decay trace's flat-looking region has its own special name: an "asymptote".
It can be growth or decay - it depends on whether n is positive (growth) or negative (decay).
If the exponent has the variable of time in it, then it will be either exponential growth (such as compound interest for example), or exponential decay (such as radioactive materials, or a capacitor discharging). If the time constant (coefficient of the time variable) is positive then it is growth, if the time constant is negative, then it is decay.
Exponential growth is when the amount of something is increasing, and exponential decay is when the amount of something is decreasing.
exponential decay
They are incredibly different acceleration patterns. Exponential growth is unbounded, whereas exponential decay is bounded so as to form a "dynamic equilibrium." This is why exponential decay is so typical of natural processes. To see work I have done in explaining exponential decay, go to the page included in the related links.
Exponential Decay. hope this will help :)
Exponential growth has a growth/decay factor (or percentage decimal) greater than 1. Decay has a decay factor less than 1.
Exponential growth goes infinitely up. Exponential decay goes infinitely over always getting closer to the x axis but never reaching it. ADDED: An exponential decay trace's flat-looking region has its own special name: an "asymptote".
That all depends on the problem given!A general form of the exponential growth/decay is:y = ab^x.If we have an exponential growth, b = 1 + rOtherwise, b = 1 - r.In the second version, the exponential growth is y = Ae^(kt) while the exponential decay is y = Ae^(-kt)
Yes.
The constant factor that each value in an exponential decay pattern is multiplied by the next value. The decay factor is the base in an exponential decay equation. for example, in the equation A= 64(0.5^n), where A is he area of a ballot and the n is the number of cuts, the decay factor is 0.5.
A = A0 e-Bt
A quantity is said to be subject to exponential decay if it decreases at a rate proportional to its value. The time required for the decaying quantity to fall to one half of its initial value.Radioactive decay is a good example where the half life is constant over the entire decay time.In non-exponential decay, half life is not constant.
Time!