The median is the middle value in a dataset when it is sorted in ascending order. It divides the data into two equal parts. Quartiles, on the other hand, divide a dataset into four equal parts. The first quartile (Q1) is the median of the lower half of the data, the second quartile (Q2) is the median of the entire dataset (same as the median), and the third quartile (Q3) is the median of the upper half of the data.
Chat with our AI personalities
Median is found by the middle number in a sorted data set. So half of the numbers are greater than the median, and half are below the median. Quartile represents one fourth (or 25%) of the data set. They are usually labeled something like first, second, third, fourth (or sometimes top quartile, bottom quartile). For example, if 24 people are in a class and take a test. 24/4 = 6, so the top six grades would be in the top quartile (I don't remember if this is considered first or fourth). If you are in the top quartile, then you did better than at least 75% of the whole class. Since 24 is even, there is no 'middle number', so the arithmetic average of number 12 & 13 are taken to find the median.
The quartiles for a set of data are three values - the lower quartile, the median and the upper quartile - such that they divide the data set into four parts with an [approximately] equal number of observations in each. Thus:a quarter of all the observations are smaller than the lower quartile,a quarter of all the observations are between the lower quartile and the median,a quarter of all the observations are between the median and the upper quartile, anda quarter of all the observations are greater than the upper quartile.The quartiles for a set of data are three values - the lower quartile, the median and the upper quartile - such that they divide the data set into four parts with an [approximately] equal number of observations in each. Thus:a quarter of all the observations are smaller than the lower quartile,a quarter of all the observations are between the lower quartile and the median,a quarter of all the observations are between the median and the upper quartile, anda quarter of all the observations are greater than the upper quartile.The quartiles for a set of data are three values - the lower quartile, the median and the upper quartile - such that they divide the data set into four parts with an [approximately] equal number of observations in each. Thus:a quarter of all the observations are smaller than the lower quartile,a quarter of all the observations are between the lower quartile and the median,a quarter of all the observations are between the median and the upper quartile, anda quarter of all the observations are greater than the upper quartile.The quartiles for a set of data are three values - the lower quartile, the median and the upper quartile - such that they divide the data set into four parts with an [approximately] equal number of observations in each. Thus:a quarter of all the observations are smaller than the lower quartile,a quarter of all the observations are between the lower quartile and the median,a quarter of all the observations are between the median and the upper quartile, anda quarter of all the observations are greater than the upper quartile.
Roughly speaking, finding the third quartile is similar to finding the median. First, use the median to split the data set into two equal halves. Then the third quartile is the median of the upper half. Similarly, the first quartile is the median of the lower half.
Interquartile range.
It shows the minimum, lower quartile, median, upper quartile and maximum of a set of observations. It may show outliers separately.It shows the minimum, lower quartile, median, upper quartile and maximum of a set of observations. It may show outliers separately.It shows the minimum, lower quartile, median, upper quartile and maximum of a set of observations. It may show outliers separately.It shows the minimum, lower quartile, median, upper quartile and maximum of a set of observations. It may show outliers separately.
Find the difference between the values for quartile 3 and quartile 1.